ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbfv2g Unicode version

Theorem csbfv2g 5520
Description: Move class substitution in and out of a function value. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbfv2g  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 B )  =  ( F `  [_ A  /  x ]_ B ) )
Distinct variable group:    x, F
Allowed substitution hints:    A( x)    B( x)    C( x)

Proof of Theorem csbfv2g
StepHypRef Expression
1 csbfv12g 5519 . 2  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) )
2 csbconstg 3057 . . 3  |-  ( A  e.  C  ->  [_ A  /  x ]_ F  =  F )
32fveq1d 5485 . 2  |-  ( A  e.  C  ->  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B )  =  ( F `  [_ A  /  x ]_ B ) )
41, 3eqtrd 2197 1  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 B )  =  ( F `  [_ A  /  x ]_ B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1342    e. wcel 2135   [_csb 3043   ` cfv 5185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-rex 2448  df-v 2726  df-sbc 2950  df-csb 3044  df-un 3118  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-br 3980  df-iota 5150  df-fv 5193
This theorem is referenced by:  csbfvg  5521  fsumabs  11400  fprodabs  11551
  Copyright terms: Public domain W3C validator