ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbfv2g Unicode version

Theorem csbfv2g 5670
Description: Move class substitution in and out of a function value. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbfv2g  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 B )  =  ( F `  [_ A  /  x ]_ B ) )
Distinct variable group:    x, F
Allowed substitution hints:    A( x)    B( x)    C( x)

Proof of Theorem csbfv2g
StepHypRef Expression
1 csbfv12g 5669 . 2  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) )
2 csbconstg 3138 . . 3  |-  ( A  e.  C  ->  [_ A  /  x ]_ F  =  F )
32fveq1d 5631 . 2  |-  ( A  e.  C  ->  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B )  =  ( F `  [_ A  /  x ]_ B ) )
41, 3eqtrd 2262 1  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 B )  =  ( F `  [_ A  /  x ]_ B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   [_csb 3124   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326
This theorem is referenced by:  csbfvg  5671  fsumabs  11984  fprodabs  12135  ixpsnbasval  14438
  Copyright terms: Public domain W3C validator