Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funbrfv | Unicode version |
Description: The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
funbrfv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 5205 | . . . 4 | |
2 | brrelex2 4645 | . . . 4 | |
3 | 1, 2 | sylan 281 | . . 3 |
4 | breq2 3986 | . . . . . 6 | |
5 | 4 | anbi2d 460 | . . . . 5 |
6 | eqeq2 2175 | . . . . 5 | |
7 | 5, 6 | imbi12d 233 | . . . 4 |
8 | funeu 5213 | . . . . . 6 | |
9 | tz6.12-1 5513 | . . . . . 6 | |
10 | 8, 9 | sylan2 284 | . . . . 5 |
11 | 10 | anabss7 573 | . . . 4 |
12 | 7, 11 | vtoclg 2786 | . . 3 |
13 | 3, 12 | mpcom 36 | . 2 |
14 | 13 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 weu 2014 wcel 2136 cvv 2726 class class class wbr 3982 wrel 4609 wfun 5182 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 |
This theorem is referenced by: funopfv 5526 fnbrfvb 5527 fvelima 5538 fvi 5543 fmptco 5651 fliftfun 5764 fliftval 5768 tfrlem5 6282 sum0 11329 isumz 11330 fsumsersdc 11336 isumclim 11362 zprodap0 11522 dvaddxx 13307 dvmulxx 13308 dvcj 13313 dvrecap 13317 dvef 13328 pilem3 13344 |
Copyright terms: Public domain | W3C validator |