ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funbrfv Unicode version

Theorem funbrfv 5640
Description: The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
funbrfv  |-  ( Fun 
F  ->  ( A F B  ->  ( F `
 A )  =  B ) )

Proof of Theorem funbrfv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 funrel 5307 . . . 4  |-  ( Fun 
F  ->  Rel  F )
2 brrelex2 4734 . . . 4  |-  ( ( Rel  F  /\  A F B )  ->  B  e.  _V )
31, 2sylan 283 . . 3  |-  ( ( Fun  F  /\  A F B )  ->  B  e.  _V )
4 breq2 4063 . . . . . 6  |-  ( y  =  B  ->  ( A F y  <->  A F B ) )
54anbi2d 464 . . . . 5  |-  ( y  =  B  ->  (
( Fun  F  /\  A F y )  <->  ( Fun  F  /\  A F B ) ) )
6 eqeq2 2217 . . . . 5  |-  ( y  =  B  ->  (
( F `  A
)  =  y  <->  ( F `  A )  =  B ) )
75, 6imbi12d 234 . . . 4  |-  ( y  =  B  ->  (
( ( Fun  F  /\  A F y )  ->  ( F `  A )  =  y )  <->  ( ( Fun 
F  /\  A F B )  ->  ( F `  A )  =  B ) ) )
8 funeu 5315 . . . . . 6  |-  ( ( Fun  F  /\  A F y )  ->  E! y  A F
y )
9 tz6.12-1 5626 . . . . . 6  |-  ( ( A F y  /\  E! y  A F
y )  ->  ( F `  A )  =  y )
108, 9sylan2 286 . . . . 5  |-  ( ( A F y  /\  ( Fun  F  /\  A F y ) )  ->  ( F `  A )  =  y )
1110anabss7 583 . . . 4  |-  ( ( Fun  F  /\  A F y )  -> 
( F `  A
)  =  y )
127, 11vtoclg 2838 . . 3  |-  ( B  e.  _V  ->  (
( Fun  F  /\  A F B )  -> 
( F `  A
)  =  B ) )
133, 12mpcom 36 . 2  |-  ( ( Fun  F  /\  A F B )  ->  ( F `  A )  =  B )
1413ex 115 1  |-  ( Fun 
F  ->  ( A F B  ->  ( F `
 A )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E!weu 2055    e. wcel 2178   _Vcvv 2776   class class class wbr 4059   Rel wrel 4698   Fun wfun 5284   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298
This theorem is referenced by:  funopfv  5641  fnbrfvb  5642  fvelima  5653  fvi  5659  fmptco  5769  fliftfun  5888  fliftval  5892  tfrlem5  6423  sum0  11814  isumz  11815  fsumsersdc  11821  isumclim  11847  zprodap0  12007  dvaddxx  15290  dvmulxx  15291  dvcj  15296  dvrecap  15300  dvef  15314  pilem3  15370
  Copyright terms: Public domain W3C validator