ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funbrfv Unicode version

Theorem funbrfv 5556
Description: The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
funbrfv  |-  ( Fun 
F  ->  ( A F B  ->  ( F `
 A )  =  B ) )

Proof of Theorem funbrfv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 funrel 5235 . . . 4  |-  ( Fun 
F  ->  Rel  F )
2 brrelex2 4669 . . . 4  |-  ( ( Rel  F  /\  A F B )  ->  B  e.  _V )
31, 2sylan 283 . . 3  |-  ( ( Fun  F  /\  A F B )  ->  B  e.  _V )
4 breq2 4009 . . . . . 6  |-  ( y  =  B  ->  ( A F y  <->  A F B ) )
54anbi2d 464 . . . . 5  |-  ( y  =  B  ->  (
( Fun  F  /\  A F y )  <->  ( Fun  F  /\  A F B ) ) )
6 eqeq2 2187 . . . . 5  |-  ( y  =  B  ->  (
( F `  A
)  =  y  <->  ( F `  A )  =  B ) )
75, 6imbi12d 234 . . . 4  |-  ( y  =  B  ->  (
( ( Fun  F  /\  A F y )  ->  ( F `  A )  =  y )  <->  ( ( Fun 
F  /\  A F B )  ->  ( F `  A )  =  B ) ) )
8 funeu 5243 . . . . . 6  |-  ( ( Fun  F  /\  A F y )  ->  E! y  A F
y )
9 tz6.12-1 5544 . . . . . 6  |-  ( ( A F y  /\  E! y  A F
y )  ->  ( F `  A )  =  y )
108, 9sylan2 286 . . . . 5  |-  ( ( A F y  /\  ( Fun  F  /\  A F y ) )  ->  ( F `  A )  =  y )
1110anabss7 583 . . . 4  |-  ( ( Fun  F  /\  A F y )  -> 
( F `  A
)  =  y )
127, 11vtoclg 2799 . . 3  |-  ( B  e.  _V  ->  (
( Fun  F  /\  A F B )  -> 
( F `  A
)  =  B ) )
133, 12mpcom 36 . 2  |-  ( ( Fun  F  /\  A F B )  ->  ( F `  A )  =  B )
1413ex 115 1  |-  ( Fun 
F  ->  ( A F B  ->  ( F `
 A )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   E!weu 2026    e. wcel 2148   _Vcvv 2739   class class class wbr 4005   Rel wrel 4633   Fun wfun 5212   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226
This theorem is referenced by:  funopfv  5557  fnbrfvb  5558  fvelima  5569  fvi  5575  fmptco  5684  fliftfun  5799  fliftval  5803  tfrlem5  6317  sum0  11398  isumz  11399  fsumsersdc  11405  isumclim  11431  zprodap0  11591  dvaddxx  14252  dvmulxx  14253  dvcj  14258  dvrecap  14262  dvef  14273  pilem3  14289
  Copyright terms: Public domain W3C validator