ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funbrfv Unicode version

Theorem funbrfv 5617
Description: The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
funbrfv  |-  ( Fun 
F  ->  ( A F B  ->  ( F `
 A )  =  B ) )

Proof of Theorem funbrfv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 funrel 5288 . . . 4  |-  ( Fun 
F  ->  Rel  F )
2 brrelex2 4716 . . . 4  |-  ( ( Rel  F  /\  A F B )  ->  B  e.  _V )
31, 2sylan 283 . . 3  |-  ( ( Fun  F  /\  A F B )  ->  B  e.  _V )
4 breq2 4048 . . . . . 6  |-  ( y  =  B  ->  ( A F y  <->  A F B ) )
54anbi2d 464 . . . . 5  |-  ( y  =  B  ->  (
( Fun  F  /\  A F y )  <->  ( Fun  F  /\  A F B ) ) )
6 eqeq2 2215 . . . . 5  |-  ( y  =  B  ->  (
( F `  A
)  =  y  <->  ( F `  A )  =  B ) )
75, 6imbi12d 234 . . . 4  |-  ( y  =  B  ->  (
( ( Fun  F  /\  A F y )  ->  ( F `  A )  =  y )  <->  ( ( Fun 
F  /\  A F B )  ->  ( F `  A )  =  B ) ) )
8 funeu 5296 . . . . . 6  |-  ( ( Fun  F  /\  A F y )  ->  E! y  A F
y )
9 tz6.12-1 5603 . . . . . 6  |-  ( ( A F y  /\  E! y  A F
y )  ->  ( F `  A )  =  y )
108, 9sylan2 286 . . . . 5  |-  ( ( A F y  /\  ( Fun  F  /\  A F y ) )  ->  ( F `  A )  =  y )
1110anabss7 583 . . . 4  |-  ( ( Fun  F  /\  A F y )  -> 
( F `  A
)  =  y )
127, 11vtoclg 2833 . . 3  |-  ( B  e.  _V  ->  (
( Fun  F  /\  A F B )  -> 
( F `  A
)  =  B ) )
133, 12mpcom 36 . 2  |-  ( ( Fun  F  /\  A F B )  ->  ( F `  A )  =  B )
1413ex 115 1  |-  ( Fun 
F  ->  ( A F B  ->  ( F `
 A )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E!weu 2054    e. wcel 2176   _Vcvv 2772   class class class wbr 4044   Rel wrel 4680   Fun wfun 5265   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279
This theorem is referenced by:  funopfv  5618  fnbrfvb  5619  fvelima  5630  fvi  5636  fmptco  5746  fliftfun  5865  fliftval  5869  tfrlem5  6400  sum0  11699  isumz  11700  fsumsersdc  11706  isumclim  11732  zprodap0  11892  dvaddxx  15175  dvmulxx  15176  dvcj  15181  dvrecap  15185  dvef  15199  pilem3  15255
  Copyright terms: Public domain W3C validator