Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funbrfv | Unicode version |
Description: The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
funbrfv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 5184 | . . . 4 | |
2 | brrelex2 4624 | . . . 4 | |
3 | 1, 2 | sylan 281 | . . 3 |
4 | breq2 3969 | . . . . . 6 | |
5 | 4 | anbi2d 460 | . . . . 5 |
6 | eqeq2 2167 | . . . . 5 | |
7 | 5, 6 | imbi12d 233 | . . . 4 |
8 | funeu 5192 | . . . . . 6 | |
9 | tz6.12-1 5492 | . . . . . 6 | |
10 | 8, 9 | sylan2 284 | . . . . 5 |
11 | 10 | anabss7 573 | . . . 4 |
12 | 7, 11 | vtoclg 2772 | . . 3 |
13 | 3, 12 | mpcom 36 | . 2 |
14 | 13 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 weu 2006 wcel 2128 cvv 2712 class class class wbr 3965 wrel 4588 wfun 5161 cfv 5167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 |
This theorem is referenced by: funopfv 5505 fnbrfvb 5506 fvelima 5517 fvi 5522 fmptco 5630 fliftfun 5741 fliftval 5745 tfrlem5 6255 sum0 11267 isumz 11268 fsumsersdc 11274 isumclim 11300 zprodap0 11460 dvaddxx 13027 dvmulxx 13028 dvcj 13033 dvrecap 13037 dvef 13048 pilem3 13064 |
Copyright terms: Public domain | W3C validator |