ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funbrfv Unicode version

Theorem funbrfv 5504
Description: The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
funbrfv  |-  ( Fun 
F  ->  ( A F B  ->  ( F `
 A )  =  B ) )

Proof of Theorem funbrfv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 funrel 5184 . . . 4  |-  ( Fun 
F  ->  Rel  F )
2 brrelex2 4624 . . . 4  |-  ( ( Rel  F  /\  A F B )  ->  B  e.  _V )
31, 2sylan 281 . . 3  |-  ( ( Fun  F  /\  A F B )  ->  B  e.  _V )
4 breq2 3969 . . . . . 6  |-  ( y  =  B  ->  ( A F y  <->  A F B ) )
54anbi2d 460 . . . . 5  |-  ( y  =  B  ->  (
( Fun  F  /\  A F y )  <->  ( Fun  F  /\  A F B ) ) )
6 eqeq2 2167 . . . . 5  |-  ( y  =  B  ->  (
( F `  A
)  =  y  <->  ( F `  A )  =  B ) )
75, 6imbi12d 233 . . . 4  |-  ( y  =  B  ->  (
( ( Fun  F  /\  A F y )  ->  ( F `  A )  =  y )  <->  ( ( Fun 
F  /\  A F B )  ->  ( F `  A )  =  B ) ) )
8 funeu 5192 . . . . . 6  |-  ( ( Fun  F  /\  A F y )  ->  E! y  A F
y )
9 tz6.12-1 5492 . . . . . 6  |-  ( ( A F y  /\  E! y  A F
y )  ->  ( F `  A )  =  y )
108, 9sylan2 284 . . . . 5  |-  ( ( A F y  /\  ( Fun  F  /\  A F y ) )  ->  ( F `  A )  =  y )
1110anabss7 573 . . . 4  |-  ( ( Fun  F  /\  A F y )  -> 
( F `  A
)  =  y )
127, 11vtoclg 2772 . . 3  |-  ( B  e.  _V  ->  (
( Fun  F  /\  A F B )  -> 
( F `  A
)  =  B ) )
133, 12mpcom 36 . 2  |-  ( ( Fun  F  /\  A F B )  ->  ( F `  A )  =  B )
1413ex 114 1  |-  ( Fun 
F  ->  ( A F B  ->  ( F `
 A )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335   E!weu 2006    e. wcel 2128   _Vcvv 2712   class class class wbr 3965   Rel wrel 4588   Fun wfun 5161   ` cfv 5167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-iota 5132  df-fun 5169  df-fv 5175
This theorem is referenced by:  funopfv  5505  fnbrfvb  5506  fvelima  5517  fvi  5522  fmptco  5630  fliftfun  5741  fliftval  5745  tfrlem5  6255  sum0  11267  isumz  11268  fsumsersdc  11274  isumclim  11300  zprodap0  11460  dvaddxx  13027  dvmulxx  13028  dvcj  13033  dvrecap  13037  dvef  13048  pilem3  13064
  Copyright terms: Public domain W3C validator