ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbfvg GIF version

Theorem csbfvg 5663
Description: Substitution for a function value. (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
csbfvg (𝐴𝐶𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴))
Distinct variable group:   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem csbfvg
StepHypRef Expression
1 csbfv2g 5662 . 2 (𝐴𝐶𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴 / 𝑥𝑥))
2 csbvarg 3152 . . 3 (𝐴𝐶𝐴 / 𝑥𝑥 = 𝐴)
32fveq2d 5627 . 2 (𝐴𝐶 → (𝐹𝐴 / 𝑥𝑥) = (𝐹𝐴))
41, 3eqtrd 2262 1 (𝐴𝐶𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  csb 3124  cfv 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5274  df-fv 5322
This theorem is referenced by:  ixpsnval  6838  swrdspsleq  11185  ixpsnbasval  14415
  Copyright terms: Public domain W3C validator