ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbfvg GIF version

Theorem csbfvg 5545
Description: Substitution for a function value. (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
csbfvg (𝐴𝐶𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴))
Distinct variable group:   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem csbfvg
StepHypRef Expression
1 csbfv2g 5544 . 2 (𝐴𝐶𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴 / 𝑥𝑥))
2 csbvarg 3083 . . 3 (𝐴𝐶𝐴 / 𝑥𝑥 = 𝐴)
32fveq2d 5511 . 2 (𝐴𝐶 → (𝐹𝐴 / 𝑥𝑥) = (𝐹𝐴))
41, 3eqtrd 2208 1 (𝐴𝐶𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2146  csb 3055  cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-iota 5170  df-fv 5216
This theorem is referenced by:  ixpsnval  6691
  Copyright terms: Public domain W3C validator