ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbfvg GIF version

Theorem csbfvg 5598
Description: Substitution for a function value. (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
csbfvg (𝐴𝐶𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴))
Distinct variable group:   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem csbfvg
StepHypRef Expression
1 csbfv2g 5597 . 2 (𝐴𝐶𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴 / 𝑥𝑥))
2 csbvarg 3112 . . 3 (𝐴𝐶𝐴 / 𝑥𝑥 = 𝐴)
32fveq2d 5562 . 2 (𝐴𝐶 → (𝐹𝐴 / 𝑥𝑥) = (𝐹𝐴))
41, 3eqtrd 2229 1 (𝐴𝐶𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  csb 3084  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266
This theorem is referenced by:  ixpsnval  6760  ixpsnbasval  14022
  Copyright terms: Public domain W3C validator