| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbfvg | GIF version | ||
| Description: Substitution for a function value. (Contributed by NM, 1-Jan-2006.) |
| Ref | Expression |
|---|---|
| csbfvg | ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbfv2g 5625 | . 2 ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘⦋𝐴 / 𝑥⦌𝑥)) | |
| 2 | csbvarg 3123 | . . 3 ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) | |
| 3 | 2 | fveq2d 5590 | . 2 ⊢ (𝐴 ∈ 𝐶 → (𝐹‘⦋𝐴 / 𝑥⦌𝑥) = (𝐹‘𝐴)) |
| 4 | 1, 3 | eqtrd 2239 | 1 ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ⦋csb 3095 ‘cfv 5277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-sbc 3001 df-csb 3096 df-un 3172 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-iota 5238 df-fv 5285 |
| This theorem is referenced by: ixpsnval 6798 swrdspsleq 11134 ixpsnbasval 14278 |
| Copyright terms: Public domain | W3C validator |