Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbing | GIF version |
Description: Distribute proper substitution through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.) |
Ref | Expression |
---|---|
csbing | ⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3048 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐶 ∩ 𝐷) = ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷)) | |
2 | csbeq1 3048 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
3 | csbeq1 3048 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐷 = ⦋𝐴 / 𝑥⦌𝐷) | |
4 | 2, 3 | ineq12d 3324 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)) |
5 | 1, 4 | eqeq12d 2180 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷) ↔ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷))) |
6 | vex 2729 | . . 3 ⊢ 𝑦 ∈ V | |
7 | nfcsb1v 3078 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
8 | nfcsb1v 3078 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐷 | |
9 | 7, 8 | nfin 3328 | . . 3 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷) |
10 | csbeq1a 3054 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
11 | csbeq1a 3054 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐷 = ⦋𝑦 / 𝑥⦌𝐷) | |
12 | 10, 11 | ineq12d 3324 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐶 ∩ 𝐷) = (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷)) |
13 | 6, 9, 12 | csbief 3089 | . 2 ⊢ ⦋𝑦 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷) |
14 | 5, 13 | vtoclg 2786 | 1 ⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ⦋csb 3045 ∩ cin 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-in 3122 |
This theorem is referenced by: csbresg 4887 |
Copyright terms: Public domain | W3C validator |