| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbing | GIF version | ||
| Description: Distribute proper substitution through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.) |
| Ref | Expression |
|---|---|
| csbing | ⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3107 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐶 ∩ 𝐷) = ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷)) | |
| 2 | csbeq1 3107 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
| 3 | csbeq1 3107 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐷 = ⦋𝐴 / 𝑥⦌𝐷) | |
| 4 | 2, 3 | ineq12d 3386 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)) |
| 5 | 1, 4 | eqeq12d 2224 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷) ↔ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷))) |
| 6 | vex 2782 | . . 3 ⊢ 𝑦 ∈ V | |
| 7 | nfcsb1v 3137 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
| 8 | nfcsb1v 3137 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐷 | |
| 9 | 7, 8 | nfin 3390 | . . 3 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷) |
| 10 | csbeq1a 3113 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
| 11 | csbeq1a 3113 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐷 = ⦋𝑦 / 𝑥⦌𝐷) | |
| 12 | 10, 11 | ineq12d 3386 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐶 ∩ 𝐷) = (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷)) |
| 13 | 6, 9, 12 | csbief 3149 | . 2 ⊢ ⦋𝑦 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷) |
| 14 | 5, 13 | vtoclg 2841 | 1 ⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 ⦋csb 3104 ∩ cin 3176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-in 3183 |
| This theorem is referenced by: csbresg 4984 |
| Copyright terms: Public domain | W3C validator |