| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > csbing | GIF version | ||
| Description: Distribute proper substitution through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.) | 
| Ref | Expression | 
|---|---|
| csbing | ⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | csbeq1 3087 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐶 ∩ 𝐷) = ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷)) | |
| 2 | csbeq1 3087 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
| 3 | csbeq1 3087 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐷 = ⦋𝐴 / 𝑥⦌𝐷) | |
| 4 | 2, 3 | ineq12d 3365 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)) | 
| 5 | 1, 4 | eqeq12d 2211 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷) ↔ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷))) | 
| 6 | vex 2766 | . . 3 ⊢ 𝑦 ∈ V | |
| 7 | nfcsb1v 3117 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
| 8 | nfcsb1v 3117 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐷 | |
| 9 | 7, 8 | nfin 3369 | . . 3 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷) | 
| 10 | csbeq1a 3093 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
| 11 | csbeq1a 3093 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐷 = ⦋𝑦 / 𝑥⦌𝐷) | |
| 12 | 10, 11 | ineq12d 3365 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐶 ∩ 𝐷) = (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷)) | 
| 13 | 6, 9, 12 | csbief 3129 | . 2 ⊢ ⦋𝑦 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷) | 
| 14 | 5, 13 | vtoclg 2824 | 1 ⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ⦋csb 3084 ∩ cin 3156 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-in 3163 | 
| This theorem is referenced by: csbresg 4949 | 
| Copyright terms: Public domain | W3C validator |