ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbing GIF version

Theorem csbing 3334
Description: Distribute proper substitution through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.)
Assertion
Ref Expression
csbing (𝐴𝐵𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))

Proof of Theorem csbing
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3052 . . 3 (𝑦 = 𝐴𝑦 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥(𝐶𝐷))
2 csbeq1 3052 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
3 csbeq1 3052 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐷 = 𝐴 / 𝑥𝐷)
42, 3ineq12d 3329 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐶𝑦 / 𝑥𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
51, 4eqeq12d 2185 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐶𝐷) = (𝑦 / 𝑥𝐶𝑦 / 𝑥𝐷) ↔ 𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)))
6 vex 2733 . . 3 𝑦 ∈ V
7 nfcsb1v 3082 . . . 4 𝑥𝑦 / 𝑥𝐶
8 nfcsb1v 3082 . . . 4 𝑥𝑦 / 𝑥𝐷
97, 8nfin 3333 . . 3 𝑥(𝑦 / 𝑥𝐶𝑦 / 𝑥𝐷)
10 csbeq1a 3058 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
11 csbeq1a 3058 . . . 4 (𝑥 = 𝑦𝐷 = 𝑦 / 𝑥𝐷)
1210, 11ineq12d 3329 . . 3 (𝑥 = 𝑦 → (𝐶𝐷) = (𝑦 / 𝑥𝐶𝑦 / 𝑥𝐷))
136, 9, 12csbief 3093 . 2 𝑦 / 𝑥(𝐶𝐷) = (𝑦 / 𝑥𝐶𝑦 / 𝑥𝐷)
145, 13vtoclg 2790 1 (𝐴𝐵𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  csb 3049  cin 3120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-in 3127
This theorem is referenced by:  csbresg  4894
  Copyright terms: Public domain W3C validator