![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbing | GIF version |
Description: Distribute proper substitution through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.) |
Ref | Expression |
---|---|
csbing | ⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3075 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐶 ∩ 𝐷) = ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷)) | |
2 | csbeq1 3075 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
3 | csbeq1 3075 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐷 = ⦋𝐴 / 𝑥⦌𝐷) | |
4 | 2, 3 | ineq12d 3352 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)) |
5 | 1, 4 | eqeq12d 2204 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷) ↔ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷))) |
6 | vex 2755 | . . 3 ⊢ 𝑦 ∈ V | |
7 | nfcsb1v 3105 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
8 | nfcsb1v 3105 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐷 | |
9 | 7, 8 | nfin 3356 | . . 3 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷) |
10 | csbeq1a 3081 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
11 | csbeq1a 3081 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐷 = ⦋𝑦 / 𝑥⦌𝐷) | |
12 | 10, 11 | ineq12d 3352 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐶 ∩ 𝐷) = (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷)) |
13 | 6, 9, 12 | csbief 3116 | . 2 ⊢ ⦋𝑦 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷) |
14 | 5, 13 | vtoclg 2812 | 1 ⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ⦋csb 3072 ∩ cin 3143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-in 3150 |
This theorem is referenced by: csbresg 4928 |
Copyright terms: Public domain | W3C validator |