ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbresg GIF version

Theorem csbresg 4894
Description: Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbresg (𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))

Proof of Theorem csbresg
StepHypRef Expression
1 csbing 3334 . . 3 (𝐴𝑉𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V)))
2 csbxpg 4692 . . . . 5 (𝐴𝑉𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V))
3 csbconstg 3063 . . . . . 6 (𝐴𝑉𝐴 / 𝑥V = V)
43xpeq2d 4635 . . . . 5 (𝐴𝑉 → (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V) = (𝐴 / 𝑥𝐶 × V))
52, 4eqtrd 2203 . . . 4 (𝐴𝑉𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V))
65ineq2d 3328 . . 3 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V)))
71, 6eqtrd 2203 . 2 (𝐴𝑉𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V)))
8 df-res 4623 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
98csbeq2i 3076 . 2 𝐴 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V))
10 df-res 4623 . 2 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))
117, 9, 103eqtr4g 2228 1 (𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  Vcvv 2730  csb 3049  cin 3120   × cxp 4609  cres 4613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-in 3127  df-opab 4051  df-xp 4617  df-res 4623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator