ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbresg GIF version

Theorem csbresg 4984
Description: Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbresg (𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))

Proof of Theorem csbresg
StepHypRef Expression
1 csbing 3391 . . 3 (𝐴𝑉𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V)))
2 csbxpg 4777 . . . . 5 (𝐴𝑉𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V))
3 csbconstg 3118 . . . . . 6 (𝐴𝑉𝐴 / 𝑥V = V)
43xpeq2d 4720 . . . . 5 (𝐴𝑉 → (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V) = (𝐴 / 𝑥𝐶 × V))
52, 4eqtrd 2242 . . . 4 (𝐴𝑉𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V))
65ineq2d 3385 . . 3 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V)))
71, 6eqtrd 2242 . 2 (𝐴𝑉𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V)))
8 df-res 4708 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
98csbeq2i 3131 . 2 𝐴 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V))
10 df-res 4708 . 2 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))
117, 9, 103eqtr4g 2267 1 (𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180  Vcvv 2779  csb 3104  cin 3176   × cxp 4694  cres 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-in 3183  df-opab 4125  df-xp 4702  df-res 4708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator