Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbresg | GIF version |
Description: Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.) |
Ref | Expression |
---|---|
csbresg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbing 3314 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V))) | |
2 | csbxpg 4666 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V)) | |
3 | csbconstg 3045 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌V = V) | |
4 | 3 | xpeq2d 4609 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V) = (⦋𝐴 / 𝑥⦌𝐶 × V)) |
5 | 2, 4 | eqtrd 2190 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × V)) |
6 | 5 | ineq2d 3308 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V))) |
7 | 1, 6 | eqtrd 2190 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V))) |
8 | df-res 4597 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
9 | 8 | csbeq2i 3058 | . 2 ⊢ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) |
10 | df-res 4597 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) | |
11 | 7, 9, 10 | 3eqtr4g 2215 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ∈ wcel 2128 Vcvv 2712 ⦋csb 3031 ∩ cin 3101 × cxp 4583 ↾ cres 4587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-in 3108 df-opab 4026 df-xp 4591 df-res 4597 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |