ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpo Unicode version

Theorem ovmpo 5977
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
ovmpog.1  |-  ( x  =  A  ->  R  =  G )
ovmpog.2  |-  ( y  =  B  ->  G  =  S )
ovmpog.3  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
ovmpo.4  |-  S  e. 
_V
Assertion
Ref Expression
ovmpo  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, D, y   
x, S, y
Allowed substitution hints:    R( x, y)    F( x, y)    G( x, y)

Proof of Theorem ovmpo
StepHypRef Expression
1 ovmpo.4 . 2  |-  S  e. 
_V
2 ovmpog.1 . . 3  |-  ( x  =  A  ->  R  =  G )
3 ovmpog.2 . . 3  |-  ( y  =  B  ->  G  =  S )
4 ovmpog.3 . . 3  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
52, 3, 4ovmpog 5976 . 2  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  ->  ( A F B )  =  S )
61, 5mp3an3 1316 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726  (class class class)co 5842    e. cmpo 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847
This theorem is referenced by:  ixxval  9832  fzval  9946
  Copyright terms: Public domain W3C validator