ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpo Unicode version

Theorem ovmpo 6062
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
ovmpog.1  |-  ( x  =  A  ->  R  =  G )
ovmpog.2  |-  ( y  =  B  ->  G  =  S )
ovmpog.3  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
ovmpo.4  |-  S  e. 
_V
Assertion
Ref Expression
ovmpo  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, D, y   
x, S, y
Allowed substitution hints:    R( x, y)    F( x, y)    G( x, y)

Proof of Theorem ovmpo
StepHypRef Expression
1 ovmpo.4 . 2  |-  S  e. 
_V
2 ovmpog.1 . . 3  |-  ( x  =  A  ->  R  =  G )
3 ovmpog.2 . . 3  |-  ( y  =  B  ->  G  =  S )
4 ovmpog.3 . . 3  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
52, 3, 4ovmpog 6061 . 2  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  ->  ( A F B )  =  S )
61, 5mp3an3 1337 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763  (class class class)co 5925    e. cmpo 5927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930
This theorem is referenced by:  ixxval  9988  fzval  10102
  Copyright terms: Public domain W3C validator