ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvoprab2 Unicode version

Theorem cbvoprab2 5915
Description: Change the second bound variable in an operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
cbvoprab2.1  |-  F/ w ph
cbvoprab2.2  |-  F/ y ps
cbvoprab2.3  |-  ( y  =  w  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvoprab2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. x ,  w >. ,  z >.  |  ps }
Distinct variable group:    x, w, y, z
Allowed substitution hints:    ph( x, y, z, w)    ps( x, y, z, w)

Proof of Theorem cbvoprab2
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 nfv 1516 . . . . . . 7  |-  F/ w  v  =  <. <. x ,  y >. ,  z
>.
2 cbvoprab2.1 . . . . . . 7  |-  F/ w ph
31, 2nfan 1553 . . . . . 6  |-  F/ w
( v  =  <. <.
x ,  y >. ,  z >.  /\  ph )
43nfex 1625 . . . . 5  |-  F/ w E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )
5 nfv 1516 . . . . . . 7  |-  F/ y  v  =  <. <. x ,  w >. ,  z >.
6 cbvoprab2.2 . . . . . . 7  |-  F/ y ps
75, 6nfan 1553 . . . . . 6  |-  F/ y ( v  =  <. <.
x ,  w >. ,  z >.  /\  ps )
87nfex 1625 . . . . 5  |-  F/ y E. z ( v  =  <. <. x ,  w >. ,  z >.  /\  ps )
9 opeq2 3759 . . . . . . . . 9  |-  ( y  =  w  ->  <. x ,  y >.  =  <. x ,  w >. )
109opeq1d 3764 . . . . . . . 8  |-  ( y  =  w  ->  <. <. x ,  y >. ,  z
>.  =  <. <. x ,  w >. ,  z >.
)
1110eqeq2d 2177 . . . . . . 7  |-  ( y  =  w  ->  (
v  =  <. <. x ,  y >. ,  z
>. 
<->  v  =  <. <. x ,  w >. ,  z >.
) )
12 cbvoprab2.3 . . . . . . 7  |-  ( y  =  w  ->  ( ph 
<->  ps ) )
1311, 12anbi12d 465 . . . . . 6  |-  ( y  =  w  ->  (
( v  =  <. <.
x ,  y >. ,  z >.  /\  ph ) 
<->  ( v  =  <. <.
x ,  w >. ,  z >.  /\  ps )
) )
1413exbidv 1813 . . . . 5  |-  ( y  =  w  ->  ( E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. z
( v  =  <. <.
x ,  w >. ,  z >.  /\  ps )
) )
154, 8, 14cbvex 1744 . . . 4  |-  ( E. y E. z ( v  =  <. <. x ,  y >. ,  z
>.  /\  ph )  <->  E. w E. z ( v  = 
<. <. x ,  w >. ,  z >.  /\  ps ) )
1615exbii 1593 . . 3  |-  ( E. x E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. x E. w E. z ( v  =  <. <. x ,  w >. ,  z >.  /\  ps ) )
1716abbii 2282 . 2  |-  { v  |  E. x E. y E. z ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph ) }  =  { v  |  E. x E. w E. z
( v  =  <. <.
x ,  w >. ,  z >.  /\  ps ) }
18 df-oprab 5846 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { v  |  E. x E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
19 df-oprab 5846 . 2  |-  { <. <.
x ,  w >. ,  z >.  |  ps }  =  { v  |  E. x E. w E. z ( v  = 
<. <. x ,  w >. ,  z >.  /\  ps ) }
2017, 18, 193eqtr4i 2196 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. x ,  w >. ,  z >.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   F/wnf 1448   E.wex 1480   {cab 2151   <.cop 3579   {coprab 5843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-oprab 5846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator