ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabrexex2 Unicode version

Theorem oprabrexex2 6098
Description: Existence of an existentially restricted operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.)
Hypotheses
Ref Expression
oprabrexex2.1  |-  A  e. 
_V
oprabrexex2.2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  e.  _V
Assertion
Ref Expression
oprabrexex2  |-  { <. <.
x ,  y >. ,  z >.  |  E. w  e.  A  ph }  e.  _V
Distinct variable group:    x, A, y, z, w
Allowed substitution hints:    ph( x, y, z, w)

Proof of Theorem oprabrexex2
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 df-oprab 5846 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  E. w  e.  A  ph }  =  { v  |  E. x E. y E. z
( v  =  <. <.
x ,  y >. ,  z >.  /\  E. w  e.  A  ph ) }
2 rexcom4 2749 . . . . 5  |-  ( E. w  e.  A  E. x E. y E. z
( v  =  <. <.
x ,  y >. ,  z >.  /\  ph ) 
<->  E. x E. w  e.  A  E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) )
3 rexcom4 2749 . . . . . . 7  |-  ( E. w  e.  A  E. y E. z ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. y E. w  e.  A  E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) )
4 rexcom4 2749 . . . . . . . . 9  |-  ( E. w  e.  A  E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. z E. w  e.  A  ( v  =  <. <.
x ,  y >. ,  z >.  /\  ph ) )
5 r19.42v 2623 . . . . . . . . . 10  |-  ( E. w  e.  A  ( v  =  <. <. x ,  y >. ,  z
>.  /\  ph )  <->  ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
E. w  e.  A  ph ) )
65exbii 1593 . . . . . . . . 9  |-  ( E. z E. w  e.  A  ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. z
( v  =  <. <.
x ,  y >. ,  z >.  /\  E. w  e.  A  ph )
)
74, 6bitri 183 . . . . . . . 8  |-  ( E. w  e.  A  E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. z
( v  =  <. <.
x ,  y >. ,  z >.  /\  E. w  e.  A  ph )
)
87exbii 1593 . . . . . . 7  |-  ( E. y E. w  e.  A  E. z ( v  =  <. <. x ,  y >. ,  z
>.  /\  ph )  <->  E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
E. w  e.  A  ph ) )
93, 8bitri 183 . . . . . 6  |-  ( E. w  e.  A  E. y E. z ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
E. w  e.  A  ph ) )
109exbii 1593 . . . . 5  |-  ( E. x E. w  e.  A  E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. x E. y E. z ( v  =  <. <. x ,  y >. ,  z
>.  /\  E. w  e.  A  ph ) )
112, 10bitr2i 184 . . . 4  |-  ( E. x E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
E. w  e.  A  ph )  <->  E. w  e.  A  E. x E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) )
1211abbii 2282 . . 3  |-  { v  |  E. x E. y E. z ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
E. w  e.  A  ph ) }  =  {
v  |  E. w  e.  A  E. x E. y E. z ( v  =  <. <. x ,  y >. ,  z
>.  /\  ph ) }
131, 12eqtri 2186 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  E. w  e.  A  ph }  =  { v  |  E. w  e.  A  E. x E. y E. z
( v  =  <. <.
x ,  y >. ,  z >.  /\  ph ) }
14 oprabrexex2.1 . . 3  |-  A  e. 
_V
15 df-oprab 5846 . . . 4  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { v  |  E. x E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
16 oprabrexex2.2 . . . 4  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  e.  _V
1715, 16eqeltrri 2240 . . 3  |-  { v  |  E. x E. y E. z ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph ) }  e.  _V
1814, 17abrexex2 6092 . 2  |-  { v  |  E. w  e.  A  E. x E. y E. z ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph ) }  e.  _V
1913, 18eqeltri 2239 1  |-  { <. <.
x ,  y >. ,  z >.  |  E. w  e.  A  ph }  e.  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136   {cab 2151   E.wrex 2445   _Vcvv 2726   <.cop 3579   {coprab 5843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-oprab 5846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator