ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabrexex2 Unicode version

Theorem oprabrexex2 5994
Description: Existence of an existentially restricted operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.)
Hypotheses
Ref Expression
oprabrexex2.1  |-  A  e. 
_V
oprabrexex2.2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  e.  _V
Assertion
Ref Expression
oprabrexex2  |-  { <. <.
x ,  y >. ,  z >.  |  E. w  e.  A  ph }  e.  _V
Distinct variable group:    x, A, y, z, w
Allowed substitution hints:    ph( x, y, z, w)

Proof of Theorem oprabrexex2
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 df-oprab 5744 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  E. w  e.  A  ph }  =  { v  |  E. x E. y E. z
( v  =  <. <.
x ,  y >. ,  z >.  /\  E. w  e.  A  ph ) }
2 rexcom4 2681 . . . . 5  |-  ( E. w  e.  A  E. x E. y E. z
( v  =  <. <.
x ,  y >. ,  z >.  /\  ph ) 
<->  E. x E. w  e.  A  E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) )
3 rexcom4 2681 . . . . . . 7  |-  ( E. w  e.  A  E. y E. z ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. y E. w  e.  A  E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) )
4 rexcom4 2681 . . . . . . . . 9  |-  ( E. w  e.  A  E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. z E. w  e.  A  ( v  =  <. <.
x ,  y >. ,  z >.  /\  ph ) )
5 r19.42v 2563 . . . . . . . . . 10  |-  ( E. w  e.  A  ( v  =  <. <. x ,  y >. ,  z
>.  /\  ph )  <->  ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
E. w  e.  A  ph ) )
65exbii 1567 . . . . . . . . 9  |-  ( E. z E. w  e.  A  ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. z
( v  =  <. <.
x ,  y >. ,  z >.  /\  E. w  e.  A  ph )
)
74, 6bitri 183 . . . . . . . 8  |-  ( E. w  e.  A  E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. z
( v  =  <. <.
x ,  y >. ,  z >.  /\  E. w  e.  A  ph )
)
87exbii 1567 . . . . . . 7  |-  ( E. y E. w  e.  A  E. z ( v  =  <. <. x ,  y >. ,  z
>.  /\  ph )  <->  E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
E. w  e.  A  ph ) )
93, 8bitri 183 . . . . . 6  |-  ( E. w  e.  A  E. y E. z ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
E. w  e.  A  ph ) )
109exbii 1567 . . . . 5  |-  ( E. x E. w  e.  A  E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. x E. y E. z ( v  =  <. <. x ,  y >. ,  z
>.  /\  E. w  e.  A  ph ) )
112, 10bitr2i 184 . . . 4  |-  ( E. x E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
E. w  e.  A  ph )  <->  E. w  e.  A  E. x E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) )
1211abbii 2231 . . 3  |-  { v  |  E. x E. y E. z ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
E. w  e.  A  ph ) }  =  {
v  |  E. w  e.  A  E. x E. y E. z ( v  =  <. <. x ,  y >. ,  z
>.  /\  ph ) }
131, 12eqtri 2136 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  E. w  e.  A  ph }  =  { v  |  E. w  e.  A  E. x E. y E. z
( v  =  <. <.
x ,  y >. ,  z >.  /\  ph ) }
14 oprabrexex2.1 . . 3  |-  A  e. 
_V
15 df-oprab 5744 . . . 4  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { v  |  E. x E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
16 oprabrexex2.2 . . . 4  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  e.  _V
1715, 16eqeltrri 2189 . . 3  |-  { v  |  E. x E. y E. z ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph ) }  e.  _V
1814, 17abrexex2 5988 . 2  |-  { v  |  E. w  e.  A  E. x E. y E. z ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph ) }  e.  _V
1913, 18eqeltri 2188 1  |-  { <. <.
x ,  y >. ,  z >.  |  E. w  e.  A  ph }  e.  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1314   E.wex 1451    e. wcel 1463   {cab 2101   E.wrex 2392   _Vcvv 2658   <.cop 3498   {coprab 5741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-oprab 5744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator