Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oprabrexex2 | Unicode version |
Description: Existence of an existentially restricted operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) |
Ref | Expression |
---|---|
oprabrexex2.1 | |
oprabrexex2.2 |
Ref | Expression |
---|---|
oprabrexex2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-oprab 5857 | . . 3 | |
2 | rexcom4 2753 | . . . . 5 | |
3 | rexcom4 2753 | . . . . . . 7 | |
4 | rexcom4 2753 | . . . . . . . . 9 | |
5 | r19.42v 2627 | . . . . . . . . . 10 | |
6 | 5 | exbii 1598 | . . . . . . . . 9 |
7 | 4, 6 | bitri 183 | . . . . . . . 8 |
8 | 7 | exbii 1598 | . . . . . . 7 |
9 | 3, 8 | bitri 183 | . . . . . 6 |
10 | 9 | exbii 1598 | . . . . 5 |
11 | 2, 10 | bitr2i 184 | . . . 4 |
12 | 11 | abbii 2286 | . . 3 |
13 | 1, 12 | eqtri 2191 | . 2 |
14 | oprabrexex2.1 | . . 3 | |
15 | df-oprab 5857 | . . . 4 | |
16 | oprabrexex2.2 | . . . 4 | |
17 | 15, 16 | eqeltrri 2244 | . . 3 |
18 | 14, 17 | abrexex2 6103 | . 2 |
19 | 13, 18 | eqeltri 2243 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1348 wex 1485 wcel 2141 cab 2156 wrex 2449 cvv 2730 cop 3586 coprab 5854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-oprab 5857 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |