ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfec2 Unicode version

Theorem dfec2 6485
Description: Alternate definition of  R-coset of  A. Definition 34 of [Suppes] p. 81. (Contributed by NM, 3-Jan-1997.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
dfec2  |-  ( A  e.  V  ->  [ A ] R  =  {
y  |  A R y } )
Distinct variable groups:    y, A    y, R
Allowed substitution hint:    V( y)

Proof of Theorem dfec2
StepHypRef Expression
1 df-ec 6484 . 2  |-  [ A ] R  =  ( R " { A }
)
2 imasng 4953 . 2  |-  ( A  e.  V  ->  ( R " { A }
)  =  { y  |  A R y } )
31, 2syl5eq 2202 1  |-  ( A  e.  V  ->  [ A ] R  =  {
y  |  A R y } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335    e. wcel 2128   {cab 2143   {csn 3561   class class class wbr 3967   "cima 4591   [cec 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-br 3968  df-opab 4028  df-xp 4594  df-cnv 4596  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-ec 6484
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator