ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfec2 Unicode version

Theorem dfec2 6386
Description: Alternate definition of  R-coset of  A. Definition 34 of [Suppes] p. 81. (Contributed by NM, 3-Jan-1997.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
dfec2  |-  ( A  e.  V  ->  [ A ] R  =  {
y  |  A R y } )
Distinct variable groups:    y, A    y, R
Allowed substitution hint:    V( y)

Proof of Theorem dfec2
StepHypRef Expression
1 df-ec 6385 . 2  |-  [ A ] R  =  ( R " { A }
)
2 imasng 4862 . 2  |-  ( A  e.  V  ->  ( R " { A }
)  =  { y  |  A R y } )
31, 2syl5eq 2159 1  |-  ( A  e.  V  ->  [ A ] R  =  {
y  |  A R y } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1314    e. wcel 1463   {cab 2101   {csn 3493   class class class wbr 3895   "cima 4502   [cec 6381
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-sbc 2879  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-br 3896  df-opab 3950  df-xp 4505  df-cnv 4507  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-ec 6385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator