ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasng Unicode version

Theorem imasng 5047
Description: The image of a singleton. (Contributed by NM, 8-May-2005.)
Assertion
Ref Expression
imasng  |-  ( A  e.  B  ->  ( R " { A }
)  =  { y  |  A R y } )
Distinct variable groups:    y, A    y, R
Allowed substitution hint:    B( y)

Proof of Theorem imasng
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2783 . 2  |-  ( A  e.  B  ->  A  e.  _V )
2 dfima2 5024 . . 3  |-  ( R
" { A }
)  =  { y  |  E. x  e. 
{ A } x R y }
3 breq1 4047 . . . . 5  |-  ( x  =  A  ->  (
x R y  <->  A R
y ) )
43rexsng 3674 . . . 4  |-  ( A  e.  _V  ->  ( E. x  e.  { A } x R y  <-> 
A R y ) )
54abbidv 2323 . . 3  |-  ( A  e.  _V  ->  { y  |  E. x  e. 
{ A } x R y }  =  { y  |  A R y } )
62, 5eqtrid 2250 . 2  |-  ( A  e.  _V  ->  ( R " { A }
)  =  { y  |  A R y } )
71, 6syl 14 1  |-  ( A  e.  B  ->  ( R " { A }
)  =  { y  |  A R y } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   {cab 2191   E.wrex 2485   _Vcvv 2772   {csn 3633   class class class wbr 4044   "cima 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688
This theorem is referenced by:  elrelimasn  5048  elimasn  5049  args  5051  fnsnfv  5638  funfvdm2  5643  dfec2  6623  mapsn  6777  shftfibg  11131  shftfib  11134
  Copyright terms: Public domain W3C validator