ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasng Unicode version

Theorem imasng 5031
Description: The image of a singleton. (Contributed by NM, 8-May-2005.)
Assertion
Ref Expression
imasng  |-  ( A  e.  B  ->  ( R " { A }
)  =  { y  |  A R y } )
Distinct variable groups:    y, A    y, R
Allowed substitution hint:    B( y)

Proof of Theorem imasng
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2771 . 2  |-  ( A  e.  B  ->  A  e.  _V )
2 dfima2 5008 . . 3  |-  ( R
" { A }
)  =  { y  |  E. x  e. 
{ A } x R y }
3 breq1 4033 . . . . 5  |-  ( x  =  A  ->  (
x R y  <->  A R
y ) )
43rexsng 3660 . . . 4  |-  ( A  e.  _V  ->  ( E. x  e.  { A } x R y  <-> 
A R y ) )
54abbidv 2311 . . 3  |-  ( A  e.  _V  ->  { y  |  E. x  e. 
{ A } x R y }  =  { y  |  A R y } )
62, 5eqtrid 2238 . 2  |-  ( A  e.  _V  ->  ( R " { A }
)  =  { y  |  A R y } )
71, 6syl 14 1  |-  ( A  e.  B  ->  ( R " { A }
)  =  { y  |  A R y } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   {cab 2179   E.wrex 2473   _Vcvv 2760   {csn 3619   class class class wbr 4030   "cima 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-cnv 4668  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673
This theorem is referenced by:  elrelimasn  5032  elimasn  5033  args  5035  fnsnfv  5617  funfvdm2  5622  dfec2  6592  mapsn  6746  shftfibg  10967  shftfib  10970
  Copyright terms: Public domain W3C validator