ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasng Unicode version

Theorem imasng 4995
Description: The image of a singleton. (Contributed by NM, 8-May-2005.)
Assertion
Ref Expression
imasng  |-  ( A  e.  B  ->  ( R " { A }
)  =  { y  |  A R y } )
Distinct variable groups:    y, A    y, R
Allowed substitution hint:    B( y)

Proof of Theorem imasng
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2750 . 2  |-  ( A  e.  B  ->  A  e.  _V )
2 dfima2 4974 . . 3  |-  ( R
" { A }
)  =  { y  |  E. x  e. 
{ A } x R y }
3 breq1 4008 . . . . 5  |-  ( x  =  A  ->  (
x R y  <->  A R
y ) )
43rexsng 3635 . . . 4  |-  ( A  e.  _V  ->  ( E. x  e.  { A } x R y  <-> 
A R y ) )
54abbidv 2295 . . 3  |-  ( A  e.  _V  ->  { y  |  E. x  e. 
{ A } x R y }  =  { y  |  A R y } )
62, 5eqtrid 2222 . 2  |-  ( A  e.  _V  ->  ( R " { A }
)  =  { y  |  A R y } )
71, 6syl 14 1  |-  ( A  e.  B  ->  ( R " { A }
)  =  { y  |  A R y } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   {cab 2163   E.wrex 2456   _Vcvv 2739   {csn 3594   class class class wbr 4005   "cima 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641
This theorem is referenced by:  elrelimasn  4996  elimasn  4997  args  4999  fnsnfv  5577  funfvdm2  5582  dfec2  6540  mapsn  6692  shftfibg  10831  shftfib  10834
  Copyright terms: Public domain W3C validator