ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecexg Unicode version

Theorem ecexg 6593
Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.)
Assertion
Ref Expression
ecexg  |-  ( R  e.  B  ->  [ A ] R  e.  _V )

Proof of Theorem ecexg
StepHypRef Expression
1 df-ec 6591 . 2  |-  [ A ] R  =  ( R " { A }
)
2 imaexg 5020 . 2  |-  ( R  e.  B  ->  ( R " { A }
)  e.  _V )
31, 2eqeltrid 2280 1  |-  ( R  e.  B  ->  [ A ] R  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   _Vcvv 2760   {csn 3619   "cima 4663   [cec 6587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-cnv 4668  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-ec 6591
This theorem is referenced by:  ecelqsg  6644  uniqs  6649  eroveu  6682  th3q  6696  dmaddpq  7441  dmmulpq  7442  addnnnq0  7511  mulnnnq0  7512  addsrpr  7807  mulsrpr  7808  quslem  12910  eqgen  13300  qusghm  13355  znzrhval  14146
  Copyright terms: Public domain W3C validator