ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdomg Unicode version

Theorem ssdomg 6768
Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
ssdomg  |-  ( B  e.  V  ->  ( A  C_  B  ->  A  ~<_  B ) )

Proof of Theorem ssdomg
StepHypRef Expression
1 ssexg 4137 . . 3  |-  ( ( A  C_  B  /\  B  e.  V )  ->  A  e.  _V )
2 simpr 110 . . 3  |-  ( ( A  C_  B  /\  B  e.  V )  ->  B  e.  V )
3 f1oi 5491 . . . . . . . . . 10  |-  (  _I  |`  A ) : A -1-1-onto-> A
4 dff1o3 5459 . . . . . . . . . 10  |-  ( (  _I  |`  A ) : A -1-1-onto-> A  <->  ( (  _I  |`  A ) : A -onto-> A  /\  Fun  `' (  _I  |`  A )
) )
53, 4mpbi 145 . . . . . . . . 9  |-  ( (  _I  |`  A ) : A -onto-> A  /\  Fun  `' (  _I  |`  A ) )
65simpli 111 . . . . . . . 8  |-  (  _I  |`  A ) : A -onto-> A
7 fof 5430 . . . . . . . 8  |-  ( (  _I  |`  A ) : A -onto-> A  ->  (  _I  |`  A ) : A --> A )
86, 7ax-mp 5 . . . . . . 7  |-  (  _I  |`  A ) : A --> A
9 fss 5369 . . . . . . 7  |-  ( ( (  _I  |`  A ) : A --> A  /\  A  C_  B )  -> 
(  _I  |`  A ) : A --> B )
108, 9mpan 424 . . . . . 6  |-  ( A 
C_  B  ->  (  _I  |`  A ) : A --> B )
11 funi 5240 . . . . . . . 8  |-  Fun  _I
12 cnvi 5025 . . . . . . . . 9  |-  `'  _I  =  _I
1312funeqi 5229 . . . . . . . 8  |-  ( Fun  `'  _I  <->  Fun  _I  )
1411, 13mpbir 146 . . . . . . 7  |-  Fun  `'  _I
15 funres11 5280 . . . . . . 7  |-  ( Fun  `'  _I  ->  Fun  `' (  _I  |`  A )
)
1614, 15ax-mp 5 . . . . . 6  |-  Fun  `' (  _I  |`  A )
1710, 16jctir 313 . . . . 5  |-  ( A 
C_  B  ->  (
(  _I  |`  A ) : A --> B  /\  Fun  `' (  _I  |`  A ) ) )
18 df-f1 5213 . . . . 5  |-  ( (  _I  |`  A ) : A -1-1-> B  <->  ( (  _I  |`  A ) : A --> B  /\  Fun  `' (  _I  |`  A )
) )
1917, 18sylibr 134 . . . 4  |-  ( A 
C_  B  ->  (  _I  |`  A ) : A -1-1-> B )
2019adantr 276 . . 3  |-  ( ( A  C_  B  /\  B  e.  V )  ->  (  _I  |`  A ) : A -1-1-> B )
21 f1dom2g 6746 . . 3  |-  ( ( A  e.  _V  /\  B  e.  V  /\  (  _I  |`  A ) : A -1-1-> B )  ->  A  ~<_  B )
221, 2, 20, 21syl3anc 1238 . 2  |-  ( ( A  C_  B  /\  B  e.  V )  ->  A  ~<_  B )
2322expcom 116 1  |-  ( B  e.  V  ->  ( A  C_  B  ->  A  ~<_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2146   _Vcvv 2735    C_ wss 3127   class class class wbr 3998    _I cid 4282   `'ccnv 4619    |` cres 4622   Fun wfun 5202   -->wf 5204   -1-1->wf1 5205   -onto->wfo 5206   -1-1-onto->wf1o 5207    ~<_ cdom 6729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-dom 6732
This theorem is referenced by:  cnvct  6799  ssct  6808  xpdom3m  6824  0domg  6827  mapdom1g  6837  phplem4dom  6852  nndomo  6854  phpm  6855  fict  6858  domfiexmid  6868  infnfi  6885  exmidfodomrlemr  7191  exmidfodomrlemrALT  7192  pw1dom2  7216  fihashss  10762  phicl2  12179  phibnd  12182  qnnen  12397  sbthom  14315
  Copyright terms: Public domain W3C validator