| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssdomg | Unicode version | ||
| Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| ssdomg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 4223 |
. . 3
| |
| 2 | simpr 110 |
. . 3
| |
| 3 | f1oi 5611 |
. . . . . . . . . 10
| |
| 4 | dff1o3 5578 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | mpbi 145 |
. . . . . . . . 9
|
| 6 | 5 | simpli 111 |
. . . . . . . 8
|
| 7 | fof 5548 |
. . . . . . . 8
| |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . 7
|
| 9 | fss 5485 |
. . . . . . 7
| |
| 10 | 8, 9 | mpan 424 |
. . . . . 6
|
| 11 | funi 5350 |
. . . . . . . 8
| |
| 12 | cnvi 5133 |
. . . . . . . . 9
| |
| 13 | 12 | funeqi 5339 |
. . . . . . . 8
|
| 14 | 11, 13 | mpbir 146 |
. . . . . . 7
|
| 15 | funres11 5393 |
. . . . . . 7
| |
| 16 | 14, 15 | ax-mp 5 |
. . . . . 6
|
| 17 | 10, 16 | jctir 313 |
. . . . 5
|
| 18 | df-f1 5323 |
. . . . 5
| |
| 19 | 17, 18 | sylibr 134 |
. . . 4
|
| 20 | 19 | adantr 276 |
. . 3
|
| 21 | f1dom2g 6907 |
. . 3
| |
| 22 | 1, 2, 20, 21 | syl3anc 1271 |
. 2
|
| 23 | 22 | expcom 116 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-dom 6889 |
| This theorem is referenced by: cnvct 6962 ssct 6975 xpdom3m 6993 0domg 6998 mapdom1g 7008 phplem4dom 7023 nndomo 7025 phpm 7027 fict 7030 domfiexmid 7040 infnfi 7057 exmidfodomrlemr 7380 exmidfodomrlemrALT 7381 pw1dom2 7412 fihashss 11038 phicl2 12736 phibnd 12739 4sqlem11 12924 qnnen 13002 isnzr2 14148 sbthom 16394 |
| Copyright terms: Public domain | W3C validator |