| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssdomg | Unicode version | ||
| Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| ssdomg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 4199 |
. . 3
| |
| 2 | simpr 110 |
. . 3
| |
| 3 | f1oi 5583 |
. . . . . . . . . 10
| |
| 4 | dff1o3 5550 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | mpbi 145 |
. . . . . . . . 9
|
| 6 | 5 | simpli 111 |
. . . . . . . 8
|
| 7 | fof 5520 |
. . . . . . . 8
| |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . 7
|
| 9 | fss 5457 |
. . . . . . 7
| |
| 10 | 8, 9 | mpan 424 |
. . . . . 6
|
| 11 | funi 5322 |
. . . . . . . 8
| |
| 12 | cnvi 5106 |
. . . . . . . . 9
| |
| 13 | 12 | funeqi 5311 |
. . . . . . . 8
|
| 14 | 11, 13 | mpbir 146 |
. . . . . . 7
|
| 15 | funres11 5365 |
. . . . . . 7
| |
| 16 | 14, 15 | ax-mp 5 |
. . . . . 6
|
| 17 | 10, 16 | jctir 313 |
. . . . 5
|
| 18 | df-f1 5295 |
. . . . 5
| |
| 19 | 17, 18 | sylibr 134 |
. . . 4
|
| 20 | 19 | adantr 276 |
. . 3
|
| 21 | f1dom2g 6870 |
. . 3
| |
| 22 | 1, 2, 20, 21 | syl3anc 1250 |
. 2
|
| 23 | 22 | expcom 116 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-dom 6852 |
| This theorem is referenced by: cnvct 6925 ssct 6938 xpdom3m 6954 0domg 6959 mapdom1g 6969 phplem4dom 6984 nndomo 6986 phpm 6988 fict 6991 domfiexmid 7001 infnfi 7018 exmidfodomrlemr 7341 exmidfodomrlemrALT 7342 pw1dom2 7373 fihashss 10998 phicl2 12651 phibnd 12654 4sqlem11 12839 qnnen 12917 isnzr2 14061 sbthom 16167 |
| Copyright terms: Public domain | W3C validator |