Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssdomg | Unicode version |
Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
ssdomg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 4128 | . . 3 | |
2 | simpr 109 | . . 3 | |
3 | f1oi 5480 | . . . . . . . . . 10 | |
4 | dff1o3 5448 | . . . . . . . . . 10 | |
5 | 3, 4 | mpbi 144 | . . . . . . . . 9 |
6 | 5 | simpli 110 | . . . . . . . 8 |
7 | fof 5420 | . . . . . . . 8 | |
8 | 6, 7 | ax-mp 5 | . . . . . . 7 |
9 | fss 5359 | . . . . . . 7 | |
10 | 8, 9 | mpan 422 | . . . . . 6 |
11 | funi 5230 | . . . . . . . 8 | |
12 | cnvi 5015 | . . . . . . . . 9 | |
13 | 12 | funeqi 5219 | . . . . . . . 8 |
14 | 11, 13 | mpbir 145 | . . . . . . 7 |
15 | funres11 5270 | . . . . . . 7 | |
16 | 14, 15 | ax-mp 5 | . . . . . 6 |
17 | 10, 16 | jctir 311 | . . . . 5 |
18 | df-f1 5203 | . . . . 5 | |
19 | 17, 18 | sylibr 133 | . . . 4 |
20 | 19 | adantr 274 | . . 3 |
21 | f1dom2g 6734 | . . 3 | |
22 | 1, 2, 20, 21 | syl3anc 1233 | . 2 |
23 | 22 | expcom 115 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2141 cvv 2730 wss 3121 class class class wbr 3989 cid 4273 ccnv 4610 cres 4613 wfun 5192 wf 5194 wf1 5195 wfo 5196 wf1o 5197 cdom 6717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-dom 6720 |
This theorem is referenced by: cnvct 6787 ssct 6796 xpdom3m 6812 0domg 6815 mapdom1g 6825 phplem4dom 6840 nndomo 6842 phpm 6843 fict 6846 domfiexmid 6856 infnfi 6873 exmidfodomrlemr 7179 exmidfodomrlemrALT 7180 pw1dom2 7204 fihashss 10751 phicl2 12168 phibnd 12171 qnnen 12386 sbthom 14058 |
Copyright terms: Public domain | W3C validator |