| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssdomg | Unicode version | ||
| Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| ssdomg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 4173 |
. . 3
| |
| 2 | simpr 110 |
. . 3
| |
| 3 | f1oi 5545 |
. . . . . . . . . 10
| |
| 4 | dff1o3 5513 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | mpbi 145 |
. . . . . . . . 9
|
| 6 | 5 | simpli 111 |
. . . . . . . 8
|
| 7 | fof 5483 |
. . . . . . . 8
| |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . 7
|
| 9 | fss 5422 |
. . . . . . 7
| |
| 10 | 8, 9 | mpan 424 |
. . . . . 6
|
| 11 | funi 5291 |
. . . . . . . 8
| |
| 12 | cnvi 5075 |
. . . . . . . . 9
| |
| 13 | 12 | funeqi 5280 |
. . . . . . . 8
|
| 14 | 11, 13 | mpbir 146 |
. . . . . . 7
|
| 15 | funres11 5331 |
. . . . . . 7
| |
| 16 | 14, 15 | ax-mp 5 |
. . . . . 6
|
| 17 | 10, 16 | jctir 313 |
. . . . 5
|
| 18 | df-f1 5264 |
. . . . 5
| |
| 19 | 17, 18 | sylibr 134 |
. . . 4
|
| 20 | 19 | adantr 276 |
. . 3
|
| 21 | f1dom2g 6824 |
. . 3
| |
| 22 | 1, 2, 20, 21 | syl3anc 1249 |
. 2
|
| 23 | 22 | expcom 116 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-dom 6810 |
| This theorem is referenced by: cnvct 6877 ssct 6886 xpdom3m 6902 0domg 6907 mapdom1g 6917 phplem4dom 6932 nndomo 6934 phpm 6935 fict 6938 domfiexmid 6948 infnfi 6965 exmidfodomrlemr 7281 exmidfodomrlemrALT 7282 pw1dom2 7310 fihashss 10925 phicl2 12407 phibnd 12410 4sqlem11 12595 qnnen 12673 isnzr2 13816 sbthom 15757 |
| Copyright terms: Public domain | W3C validator |