| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ssdomg | Unicode version | ||
| Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) | 
| Ref | Expression | 
|---|---|
| ssdomg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssexg 4172 | 
. . 3
 | |
| 2 | simpr 110 | 
. . 3
 | |
| 3 | f1oi 5542 | 
. . . . . . . . . 10
 | |
| 4 | dff1o3 5510 | 
. . . . . . . . . 10
 | |
| 5 | 3, 4 | mpbi 145 | 
. . . . . . . . 9
 | 
| 6 | 5 | simpli 111 | 
. . . . . . . 8
 | 
| 7 | fof 5480 | 
. . . . . . . 8
 | |
| 8 | 6, 7 | ax-mp 5 | 
. . . . . . 7
 | 
| 9 | fss 5419 | 
. . . . . . 7
 | |
| 10 | 8, 9 | mpan 424 | 
. . . . . 6
 | 
| 11 | funi 5290 | 
. . . . . . . 8
 | |
| 12 | cnvi 5074 | 
. . . . . . . . 9
 | |
| 13 | 12 | funeqi 5279 | 
. . . . . . . 8
 | 
| 14 | 11, 13 | mpbir 146 | 
. . . . . . 7
 | 
| 15 | funres11 5330 | 
. . . . . . 7
 | |
| 16 | 14, 15 | ax-mp 5 | 
. . . . . 6
 | 
| 17 | 10, 16 | jctir 313 | 
. . . . 5
 | 
| 18 | df-f1 5263 | 
. . . . 5
 | |
| 19 | 17, 18 | sylibr 134 | 
. . . 4
 | 
| 20 | 19 | adantr 276 | 
. . 3
 | 
| 21 | f1dom2g 6815 | 
. . 3
 | |
| 22 | 1, 2, 20, 21 | syl3anc 1249 | 
. 2
 | 
| 23 | 22 | expcom 116 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-dom 6801 | 
| This theorem is referenced by: cnvct 6868 ssct 6877 xpdom3m 6893 0domg 6898 mapdom1g 6908 phplem4dom 6923 nndomo 6925 phpm 6926 fict 6929 domfiexmid 6939 infnfi 6956 exmidfodomrlemr 7269 exmidfodomrlemrALT 7270 pw1dom2 7294 fihashss 10908 phicl2 12382 phibnd 12385 4sqlem11 12570 qnnen 12648 isnzr2 13740 sbthom 15670 | 
| Copyright terms: Public domain | W3C validator |