| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssdomg | Unicode version | ||
| Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| ssdomg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 4183 |
. . 3
| |
| 2 | simpr 110 |
. . 3
| |
| 3 | f1oi 5560 |
. . . . . . . . . 10
| |
| 4 | dff1o3 5528 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | mpbi 145 |
. . . . . . . . 9
|
| 6 | 5 | simpli 111 |
. . . . . . . 8
|
| 7 | fof 5498 |
. . . . . . . 8
| |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . 7
|
| 9 | fss 5437 |
. . . . . . 7
| |
| 10 | 8, 9 | mpan 424 |
. . . . . 6
|
| 11 | funi 5303 |
. . . . . . . 8
| |
| 12 | cnvi 5087 |
. . . . . . . . 9
| |
| 13 | 12 | funeqi 5292 |
. . . . . . . 8
|
| 14 | 11, 13 | mpbir 146 |
. . . . . . 7
|
| 15 | funres11 5346 |
. . . . . . 7
| |
| 16 | 14, 15 | ax-mp 5 |
. . . . . 6
|
| 17 | 10, 16 | jctir 313 |
. . . . 5
|
| 18 | df-f1 5276 |
. . . . 5
| |
| 19 | 17, 18 | sylibr 134 |
. . . 4
|
| 20 | 19 | adantr 276 |
. . 3
|
| 21 | f1dom2g 6847 |
. . 3
| |
| 22 | 1, 2, 20, 21 | syl3anc 1250 |
. 2
|
| 23 | 22 | expcom 116 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-dom 6829 |
| This theorem is referenced by: cnvct 6901 ssct 6913 xpdom3m 6929 0domg 6934 mapdom1g 6944 phplem4dom 6959 nndomo 6961 phpm 6962 fict 6965 domfiexmid 6975 infnfi 6992 exmidfodomrlemr 7310 exmidfodomrlemrALT 7311 pw1dom2 7339 fihashss 10961 phicl2 12536 phibnd 12539 4sqlem11 12724 qnnen 12802 isnzr2 13946 sbthom 15965 |
| Copyright terms: Public domain | W3C validator |