ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdomg Unicode version

Theorem ssdomg 6756
Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
ssdomg  |-  ( B  e.  V  ->  ( A  C_  B  ->  A  ~<_  B ) )

Proof of Theorem ssdomg
StepHypRef Expression
1 ssexg 4128 . . 3  |-  ( ( A  C_  B  /\  B  e.  V )  ->  A  e.  _V )
2 simpr 109 . . 3  |-  ( ( A  C_  B  /\  B  e.  V )  ->  B  e.  V )
3 f1oi 5480 . . . . . . . . . 10  |-  (  _I  |`  A ) : A -1-1-onto-> A
4 dff1o3 5448 . . . . . . . . . 10  |-  ( (  _I  |`  A ) : A -1-1-onto-> A  <->  ( (  _I  |`  A ) : A -onto-> A  /\  Fun  `' (  _I  |`  A )
) )
53, 4mpbi 144 . . . . . . . . 9  |-  ( (  _I  |`  A ) : A -onto-> A  /\  Fun  `' (  _I  |`  A ) )
65simpli 110 . . . . . . . 8  |-  (  _I  |`  A ) : A -onto-> A
7 fof 5420 . . . . . . . 8  |-  ( (  _I  |`  A ) : A -onto-> A  ->  (  _I  |`  A ) : A --> A )
86, 7ax-mp 5 . . . . . . 7  |-  (  _I  |`  A ) : A --> A
9 fss 5359 . . . . . . 7  |-  ( ( (  _I  |`  A ) : A --> A  /\  A  C_  B )  -> 
(  _I  |`  A ) : A --> B )
108, 9mpan 422 . . . . . 6  |-  ( A 
C_  B  ->  (  _I  |`  A ) : A --> B )
11 funi 5230 . . . . . . . 8  |-  Fun  _I
12 cnvi 5015 . . . . . . . . 9  |-  `'  _I  =  _I
1312funeqi 5219 . . . . . . . 8  |-  ( Fun  `'  _I  <->  Fun  _I  )
1411, 13mpbir 145 . . . . . . 7  |-  Fun  `'  _I
15 funres11 5270 . . . . . . 7  |-  ( Fun  `'  _I  ->  Fun  `' (  _I  |`  A )
)
1614, 15ax-mp 5 . . . . . 6  |-  Fun  `' (  _I  |`  A )
1710, 16jctir 311 . . . . 5  |-  ( A 
C_  B  ->  (
(  _I  |`  A ) : A --> B  /\  Fun  `' (  _I  |`  A ) ) )
18 df-f1 5203 . . . . 5  |-  ( (  _I  |`  A ) : A -1-1-> B  <->  ( (  _I  |`  A ) : A --> B  /\  Fun  `' (  _I  |`  A )
) )
1917, 18sylibr 133 . . . 4  |-  ( A 
C_  B  ->  (  _I  |`  A ) : A -1-1-> B )
2019adantr 274 . . 3  |-  ( ( A  C_  B  /\  B  e.  V )  ->  (  _I  |`  A ) : A -1-1-> B )
21 f1dom2g 6734 . . 3  |-  ( ( A  e.  _V  /\  B  e.  V  /\  (  _I  |`  A ) : A -1-1-> B )  ->  A  ~<_  B )
221, 2, 20, 21syl3anc 1233 . 2  |-  ( ( A  C_  B  /\  B  e.  V )  ->  A  ~<_  B )
2322expcom 115 1  |-  ( B  e.  V  ->  ( A  C_  B  ->  A  ~<_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141   _Vcvv 2730    C_ wss 3121   class class class wbr 3989    _I cid 4273   `'ccnv 4610    |` cres 4613   Fun wfun 5192   -->wf 5194   -1-1->wf1 5195   -onto->wfo 5196   -1-1-onto->wf1o 5197    ~<_ cdom 6717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-dom 6720
This theorem is referenced by:  cnvct  6787  ssct  6796  xpdom3m  6812  0domg  6815  mapdom1g  6825  phplem4dom  6840  nndomo  6842  phpm  6843  fict  6846  domfiexmid  6856  infnfi  6873  exmidfodomrlemr  7179  exmidfodomrlemrALT  7180  pw1dom2  7204  fihashss  10751  phicl2  12168  phibnd  12171  qnnen  12386  sbthom  14058
  Copyright terms: Public domain W3C validator