| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssdomg | Unicode version | ||
| Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| ssdomg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 4184 |
. . 3
| |
| 2 | simpr 110 |
. . 3
| |
| 3 | f1oi 5562 |
. . . . . . . . . 10
| |
| 4 | dff1o3 5530 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | mpbi 145 |
. . . . . . . . 9
|
| 6 | 5 | simpli 111 |
. . . . . . . 8
|
| 7 | fof 5500 |
. . . . . . . 8
| |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . 7
|
| 9 | fss 5439 |
. . . . . . 7
| |
| 10 | 8, 9 | mpan 424 |
. . . . . 6
|
| 11 | funi 5304 |
. . . . . . . 8
| |
| 12 | cnvi 5088 |
. . . . . . . . 9
| |
| 13 | 12 | funeqi 5293 |
. . . . . . . 8
|
| 14 | 11, 13 | mpbir 146 |
. . . . . . 7
|
| 15 | funres11 5347 |
. . . . . . 7
| |
| 16 | 14, 15 | ax-mp 5 |
. . . . . 6
|
| 17 | 10, 16 | jctir 313 |
. . . . 5
|
| 18 | df-f1 5277 |
. . . . 5
| |
| 19 | 17, 18 | sylibr 134 |
. . . 4
|
| 20 | 19 | adantr 276 |
. . 3
|
| 21 | f1dom2g 6849 |
. . 3
| |
| 22 | 1, 2, 20, 21 | syl3anc 1250 |
. 2
|
| 23 | 22 | expcom 116 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-dom 6831 |
| This theorem is referenced by: cnvct 6903 ssct 6915 xpdom3m 6931 0domg 6936 mapdom1g 6946 phplem4dom 6961 nndomo 6963 phpm 6964 fict 6967 domfiexmid 6977 infnfi 6994 exmidfodomrlemr 7312 exmidfodomrlemrALT 7313 pw1dom2 7341 fihashss 10963 phicl2 12569 phibnd 12572 4sqlem11 12757 qnnen 12835 isnzr2 13979 sbthom 16002 |
| Copyright terms: Public domain | W3C validator |