ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f11o Unicode version

Theorem f11o 5465
Description: Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998.)
Hypothesis
Ref Expression
f11o.1  |-  F  e. 
_V
Assertion
Ref Expression
f11o  |-  ( F : A -1-1-> B  <->  E. x
( F : A -1-1-onto-> x  /\  x  C_  B ) )
Distinct variable groups:    x, F    x, A    x, B

Proof of Theorem f11o
StepHypRef Expression
1 f11o.1 . . . 4  |-  F  e. 
_V
21ffoss 5464 . . 3  |-  ( F : A --> B  <->  E. x
( F : A -onto->
x  /\  x  C_  B
) )
32anbi1i 454 . 2  |-  ( ( F : A --> B  /\  Fun  `' F )  <->  ( E. x ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F ) )
4 df-f1 5193 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
5 dff1o3 5438 . . . . . 6  |-  ( F : A -1-1-onto-> x  <->  ( F : A -onto-> x  /\  Fun  `' F ) )
65anbi1i 454 . . . . 5  |-  ( ( F : A -1-1-onto-> x  /\  x  C_  B )  <->  ( ( F : A -onto-> x  /\  Fun  `' F )  /\  x  C_  B ) )
7 an32 552 . . . . 5  |-  ( ( ( F : A -onto->
x  /\  Fun  `' F
)  /\  x  C_  B
)  <->  ( ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F ) )
86, 7bitri 183 . . . 4  |-  ( ( F : A -1-1-onto-> x  /\  x  C_  B )  <->  ( ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F ) )
98exbii 1593 . . 3  |-  ( E. x ( F : A
-1-1-onto-> x  /\  x  C_  B
)  <->  E. x ( ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F
) )
10 19.41v 1890 . . 3  |-  ( E. x ( ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F )  <->  ( E. x ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F ) )
119, 10bitri 183 . 2  |-  ( E. x ( F : A
-1-1-onto-> x  /\  x  C_  B
)  <->  ( E. x
( F : A -onto->
x  /\  x  C_  B
)  /\  Fun  `' F
) )
123, 4, 113bitr4i 211 1  |-  ( F : A -1-1-> B  <->  E. x
( F : A -1-1-onto-> x  /\  x  C_  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1480    e. wcel 2136   _Vcvv 2726    C_ wss 3116   `'ccnv 4603   Fun wfun 5182   -->wf 5184   -1-1->wf1 5185   -onto->wfo 5186   -1-1-onto->wf1o 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-cnv 4612  df-dm 4614  df-rn 4615  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195
This theorem is referenced by:  domen  6717
  Copyright terms: Public domain W3C validator