ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f11o Unicode version

Theorem f11o 5475
Description: Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998.)
Hypothesis
Ref Expression
f11o.1  |-  F  e. 
_V
Assertion
Ref Expression
f11o  |-  ( F : A -1-1-> B  <->  E. x
( F : A -1-1-onto-> x  /\  x  C_  B ) )
Distinct variable groups:    x, F    x, A    x, B

Proof of Theorem f11o
StepHypRef Expression
1 f11o.1 . . . 4  |-  F  e. 
_V
21ffoss 5474 . . 3  |-  ( F : A --> B  <->  E. x
( F : A -onto->
x  /\  x  C_  B
) )
32anbi1i 455 . 2  |-  ( ( F : A --> B  /\  Fun  `' F )  <->  ( E. x ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F ) )
4 df-f1 5203 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
5 dff1o3 5448 . . . . . 6  |-  ( F : A -1-1-onto-> x  <->  ( F : A -onto-> x  /\  Fun  `' F ) )
65anbi1i 455 . . . . 5  |-  ( ( F : A -1-1-onto-> x  /\  x  C_  B )  <->  ( ( F : A -onto-> x  /\  Fun  `' F )  /\  x  C_  B ) )
7 an32 557 . . . . 5  |-  ( ( ( F : A -onto->
x  /\  Fun  `' F
)  /\  x  C_  B
)  <->  ( ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F ) )
86, 7bitri 183 . . . 4  |-  ( ( F : A -1-1-onto-> x  /\  x  C_  B )  <->  ( ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F ) )
98exbii 1598 . . 3  |-  ( E. x ( F : A
-1-1-onto-> x  /\  x  C_  B
)  <->  E. x ( ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F
) )
10 19.41v 1895 . . 3  |-  ( E. x ( ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F )  <->  ( E. x ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F ) )
119, 10bitri 183 . 2  |-  ( E. x ( F : A
-1-1-onto-> x  /\  x  C_  B
)  <->  ( E. x
( F : A -onto->
x  /\  x  C_  B
)  /\  Fun  `' F
) )
123, 4, 113bitr4i 211 1  |-  ( F : A -1-1-> B  <->  E. x
( F : A -1-1-onto-> x  /\  x  C_  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1485    e. wcel 2141   _Vcvv 2730    C_ wss 3121   `'ccnv 4610   Fun wfun 5192   -->wf 5194   -1-1->wf1 5195   -onto->wfo 5196   -1-1-onto->wf1o 5197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-cnv 4619  df-dm 4621  df-rn 4622  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205
This theorem is referenced by:  domen  6729
  Copyright terms: Public domain W3C validator