ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f11o Unicode version

Theorem f11o 5554
Description: Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998.)
Hypothesis
Ref Expression
f11o.1  |-  F  e. 
_V
Assertion
Ref Expression
f11o  |-  ( F : A -1-1-> B  <->  E. x
( F : A -1-1-onto-> x  /\  x  C_  B ) )
Distinct variable groups:    x, F    x, A    x, B

Proof of Theorem f11o
StepHypRef Expression
1 f11o.1 . . . 4  |-  F  e. 
_V
21ffoss 5553 . . 3  |-  ( F : A --> B  <->  E. x
( F : A -onto->
x  /\  x  C_  B
) )
32anbi1i 458 . 2  |-  ( ( F : A --> B  /\  Fun  `' F )  <->  ( E. x ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F ) )
4 df-f1 5275 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
5 dff1o3 5527 . . . . . 6  |-  ( F : A -1-1-onto-> x  <->  ( F : A -onto-> x  /\  Fun  `' F ) )
65anbi1i 458 . . . . 5  |-  ( ( F : A -1-1-onto-> x  /\  x  C_  B )  <->  ( ( F : A -onto-> x  /\  Fun  `' F )  /\  x  C_  B ) )
7 an32 562 . . . . 5  |-  ( ( ( F : A -onto->
x  /\  Fun  `' F
)  /\  x  C_  B
)  <->  ( ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F ) )
86, 7bitri 184 . . . 4  |-  ( ( F : A -1-1-onto-> x  /\  x  C_  B )  <->  ( ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F ) )
98exbii 1627 . . 3  |-  ( E. x ( F : A
-1-1-onto-> x  /\  x  C_  B
)  <->  E. x ( ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F
) )
10 19.41v 1925 . . 3  |-  ( E. x ( ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F )  <->  ( E. x ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F ) )
119, 10bitri 184 . 2  |-  ( E. x ( F : A
-1-1-onto-> x  /\  x  C_  B
)  <->  ( E. x
( F : A -onto->
x  /\  x  C_  B
)  /\  Fun  `' F
) )
123, 4, 113bitr4i 212 1  |-  ( F : A -1-1-> B  <->  E. x
( F : A -1-1-onto-> x  /\  x  C_  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1514    e. wcel 2175   _Vcvv 2771    C_ wss 3165   `'ccnv 4673   Fun wfun 5264   -->wf 5266   -1-1->wf1 5267   -onto->wfo 5268   -1-1-onto->wf1o 5269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-cnv 4682  df-dm 4684  df-rn 4685  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277
This theorem is referenced by:  domen  6839
  Copyright terms: Public domain W3C validator