Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ofo | Unicode version |
Description: A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004.) |
Ref | Expression |
---|---|
f1ofo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o3 5413 | . 2 | |
2 | 1 | simplbi 272 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 ccnv 4578 wfun 5157 wfo 5161 wf1o 5162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-11 1483 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-in 3104 df-ss 3111 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 |
This theorem is referenced by: f1imacnv 5424 f1ococnv2 5434 fo00 5443 isoini 5759 isoselem 5761 f1opw2 6016 f1dmex 6054 bren 6681 f1oeng 6691 en1 6733 mapen 6780 ssenen 6785 phplem4 6789 phplem4on 6801 dif1en 6813 fiintim 6862 fidcenumlemim 6885 supisolem 6940 ordiso2 6965 djuunr 6996 omct 7047 ctssexmid 7072 1fv 10016 hashfacen 10684 fsumf1o 11264 fisumss 11266 fprodf1o 11462 fprodssdc 11464 ennnfonelemrn 12099 ennnfonelemnn0 12102 ennnfonelemim 12104 exmidunben 12106 ctinfomlemom 12107 ctinfom 12108 qnnen 12111 enctlem 12112 hmeontr 12652 hmeoimaf1o 12653 subctctexmid 13512 exmidsbthrlem 13534 sbthomlem 13537 |
Copyright terms: Public domain | W3C validator |