| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ofo | Unicode version | ||
| Description: A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004.) |
| Ref | Expression |
|---|---|
| f1ofo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o3 5513 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 |
| This theorem is referenced by: f1imacnv 5524 f1ococnv2 5534 fo00 5543 isoini 5868 isoselem 5870 f1opw2 6133 f1dmex 6182 bren 6815 f1oeng 6825 en1 6867 mapen 6916 ssenen 6921 phplem4 6925 phplem4on 6937 dif1en 6949 fiintim 7001 fidcenumlemim 7027 supisolem 7083 ordiso2 7110 djuunr 7141 omct 7192 ctssexmid 7225 1fv 10231 hashfacen 10945 fsumf1o 11572 fisumss 11574 fprodf1o 11770 fprodssdc 11772 nninfct 12233 ennnfonelemrn 12661 ennnfonelemnn0 12664 ennnfonelemim 12666 exmidunben 12668 ctinfomlemom 12669 ctinfom 12670 qnnen 12673 enctlem 12674 ssomct 12687 xpsfrn 13052 imasmndf1 13156 imasgrpf1 13318 imasrngf1 13589 imasringf1 13697 znleval 14285 hmeontr 14633 hmeoimaf1o 14634 fsumdvdsmul 15311 subctctexmid 15731 domomsubct 15732 exmidsbthrlem 15753 sbthomlem 15756 |
| Copyright terms: Public domain | W3C validator |