| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ofo | Unicode version | ||
| Description: A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004.) |
| Ref | Expression |
|---|---|
| f1ofo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o3 5578 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 |
| This theorem is referenced by: f1imacnv 5589 f1ococnv2 5599 fo00 5609 isoini 5942 isoselem 5944 f1opw2 6212 f1dmex 6261 bren 6895 f1oeng 6908 en1 6951 mapen 7007 ssenen 7012 phplem4 7016 phplem4on 7029 dif1en 7041 fiintim 7093 fidcenumlemim 7119 supisolem 7175 ordiso2 7202 djuunr 7233 omct 7284 ctssexmid 7317 1fv 10335 hashfacen 11058 fsumf1o 11901 fisumss 11903 fprodf1o 12099 fprodssdc 12101 nninfct 12562 ennnfonelemrn 12990 ennnfonelemnn0 12993 ennnfonelemim 12995 exmidunben 12997 ctinfomlemom 12998 ctinfom 12999 qnnen 13002 enctlem 13003 ssomct 13016 xpsfrn 13383 imasmndf1 13487 imasgrpf1 13649 imasrngf1 13920 imasringf1 14028 znleval 14617 hmeontr 14987 hmeoimaf1o 14988 fsumdvdsmul 15665 subctctexmid 16366 domomsubct 16367 exmidsbthrlem 16390 sbthomlem 16393 |
| Copyright terms: Public domain | W3C validator |