| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ofo | Unicode version | ||
| Description: A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004.) |
| Ref | Expression |
|---|---|
| f1ofo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o3 5530 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 |
| This theorem is referenced by: f1imacnv 5541 f1ococnv2 5551 fo00 5560 isoini 5889 isoselem 5891 f1opw2 6154 f1dmex 6203 bren 6837 f1oeng 6850 en1 6893 mapen 6945 ssenen 6950 phplem4 6954 phplem4on 6966 dif1en 6978 fiintim 7030 fidcenumlemim 7056 supisolem 7112 ordiso2 7139 djuunr 7170 omct 7221 ctssexmid 7254 1fv 10263 hashfacen 10983 fsumf1o 11734 fisumss 11736 fprodf1o 11932 fprodssdc 11934 nninfct 12395 ennnfonelemrn 12823 ennnfonelemnn0 12826 ennnfonelemim 12828 exmidunben 12830 ctinfomlemom 12831 ctinfom 12832 qnnen 12835 enctlem 12836 ssomct 12849 xpsfrn 13215 imasmndf1 13319 imasgrpf1 13481 imasrngf1 13752 imasringf1 13860 znleval 14448 hmeontr 14818 hmeoimaf1o 14819 fsumdvdsmul 15496 subctctexmid 15974 domomsubct 15975 exmidsbthrlem 15998 sbthomlem 16001 |
| Copyright terms: Public domain | W3C validator |