| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ofo | Unicode version | ||
| Description: A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004.) |
| Ref | Expression |
|---|---|
| f1ofo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o3 5511 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 |
| This theorem is referenced by: f1imacnv 5522 f1ococnv2 5532 fo00 5541 isoini 5866 isoselem 5868 f1opw2 6130 f1dmex 6174 bren 6807 f1oeng 6817 en1 6859 mapen 6908 ssenen 6913 phplem4 6917 phplem4on 6929 dif1en 6941 fiintim 6993 fidcenumlemim 7019 supisolem 7075 ordiso2 7102 djuunr 7133 omct 7184 ctssexmid 7217 1fv 10216 hashfacen 10930 fsumf1o 11557 fisumss 11559 fprodf1o 11755 fprodssdc 11757 nninfct 12218 ennnfonelemrn 12646 ennnfonelemnn0 12649 ennnfonelemim 12651 exmidunben 12653 ctinfomlemom 12654 ctinfom 12655 qnnen 12658 enctlem 12659 ssomct 12672 xpsfrn 13003 imasgrpf1 13252 imasrngf1 13523 imasringf1 13631 znleval 14219 hmeontr 14559 hmeoimaf1o 14560 fsumdvdsmul 15237 subctctexmid 15655 exmidsbthrlem 15676 sbthomlem 15679 |
| Copyright terms: Public domain | W3C validator |