ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffo2 Unicode version

Theorem dffo2 5424
Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
dffo2  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  ran  F  =  B ) )

Proof of Theorem dffo2
StepHypRef Expression
1 fof 5420 . . 3  |-  ( F : A -onto-> B  ->  F : A --> B )
2 forn 5423 . . 3  |-  ( F : A -onto-> B  ->  ran  F  =  B )
31, 2jca 304 . 2  |-  ( F : A -onto-> B  -> 
( F : A --> B  /\  ran  F  =  B ) )
4 ffn 5347 . . 3  |-  ( F : A --> B  ->  F  Fn  A )
5 df-fo 5204 . . . 4  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
65biimpri 132 . . 3  |-  ( ( F  Fn  A  /\  ran  F  =  B )  ->  F : A -onto-> B )
74, 6sylan 281 . 2  |-  ( ( F : A --> B  /\  ran  F  =  B )  ->  F : A -onto-> B )
83, 7impbii 125 1  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  ran  F  =  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1348   ran crn 4612    Fn wfn 5193   -->wf 5194   -onto->wfo 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134  df-f 5202  df-fo 5204
This theorem is referenced by:  foco  5430  dff1o5  5451  dffo3  5643  dffo4  5644  fo1stresm  6140  fo2ndresm  6141  fo2ndf  6206  1fv  10095
  Copyright terms: Public domain W3C validator