ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffo2 Unicode version

Theorem dffo2 5444
Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
dffo2  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  ran  F  =  B ) )

Proof of Theorem dffo2
StepHypRef Expression
1 fof 5440 . . 3  |-  ( F : A -onto-> B  ->  F : A --> B )
2 forn 5443 . . 3  |-  ( F : A -onto-> B  ->  ran  F  =  B )
31, 2jca 306 . 2  |-  ( F : A -onto-> B  -> 
( F : A --> B  /\  ran  F  =  B ) )
4 ffn 5367 . . 3  |-  ( F : A --> B  ->  F  Fn  A )
5 df-fo 5224 . . . 4  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
65biimpri 133 . . 3  |-  ( ( F  Fn  A  /\  ran  F  =  B )  ->  F : A -onto-> B )
74, 6sylan 283 . 2  |-  ( ( F : A --> B  /\  ran  F  =  B )  ->  F : A -onto-> B )
83, 7impbii 126 1  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  ran  F  =  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353   ran crn 4629    Fn wfn 5213   -->wf 5214   -onto->wfo 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3137  df-ss 3144  df-f 5222  df-fo 5224
This theorem is referenced by:  foco  5450  dff1o5  5472  dffo3  5665  dffo4  5666  fo1stresm  6164  fo2ndresm  6165  fo2ndf  6230  1fv  10141
  Copyright terms: Public domain W3C validator