ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffo2 Unicode version

Theorem dffo2 5487
Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
dffo2  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  ran  F  =  B ) )

Proof of Theorem dffo2
StepHypRef Expression
1 fof 5483 . . 3  |-  ( F : A -onto-> B  ->  F : A --> B )
2 forn 5486 . . 3  |-  ( F : A -onto-> B  ->  ran  F  =  B )
31, 2jca 306 . 2  |-  ( F : A -onto-> B  -> 
( F : A --> B  /\  ran  F  =  B ) )
4 ffn 5410 . . 3  |-  ( F : A --> B  ->  F  Fn  A )
5 df-fo 5265 . . . 4  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
65biimpri 133 . . 3  |-  ( ( F  Fn  A  /\  ran  F  =  B )  ->  F : A -onto-> B )
74, 6sylan 283 . 2  |-  ( ( F : A --> B  /\  ran  F  =  B )  ->  F : A -onto-> B )
83, 7impbii 126 1  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  ran  F  =  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   ran crn 4665    Fn wfn 5254   -->wf 5255   -onto->wfo 5257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-f 5263  df-fo 5265
This theorem is referenced by:  foco  5494  dff1o5  5516  dffo3  5712  dffo4  5713  fo1stresm  6228  fo2ndresm  6229  fo2ndf  6294  1fv  10231
  Copyright terms: Public domain W3C validator