ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo1stresm Unicode version

Theorem fo1stresm 6216
Description: Onto mapping of a restriction of the  1st (first member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
Assertion
Ref Expression
fo1stresm  |-  ( E. y  y  e.  B  ->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> A )
Distinct variable group:    y, B
Allowed substitution hint:    A( y)

Proof of Theorem fo1stresm
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2256 . . 3  |-  ( v  =  y  ->  (
v  e.  B  <->  y  e.  B ) )
21cbvexv 1930 . 2  |-  ( E. v  v  e.  B  <->  E. y  y  e.  B
)
3 opelxp 4690 . . . . . . . . . 10  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  <->  ( u  e.  A  /\  v  e.  B ) )
4 fvres 5579 . . . . . . . . . . . 12  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  ( ( 1st  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  =  ( 1st `  <. u ,  v
>. ) )
5 vex 2763 . . . . . . . . . . . . 13  |-  u  e. 
_V
6 vex 2763 . . . . . . . . . . . . 13  |-  v  e. 
_V
75, 6op1st 6201 . . . . . . . . . . . 12  |-  ( 1st `  <. u ,  v
>. )  =  u
84, 7eqtr2di 2243 . . . . . . . . . . 11  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  u  =  ( ( 1st  |`  ( A  X.  B ) ) `
 <. u ,  v
>. ) )
9 f1stres 6214 . . . . . . . . . . . . 13  |-  ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B ) --> A
10 ffn 5404 . . . . . . . . . . . . 13  |-  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) --> A  ->  ( 1st  |`  ( A  X.  B ) )  Fn  ( A  X.  B
) )
119, 10ax-mp 5 . . . . . . . . . . . 12  |-  ( 1st  |`  ( A  X.  B
) )  Fn  ( A  X.  B )
12 fnfvelrn 5691 . . . . . . . . . . . 12  |-  ( ( ( 1st  |`  ( A  X.  B ) )  Fn  ( A  X.  B )  /\  <. u ,  v >.  e.  ( A  X.  B ) )  ->  ( ( 1st  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
1311, 12mpan 424 . . . . . . . . . . 11  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  ( ( 1st  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
148, 13eqeltrd 2270 . . . . . . . . . 10  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  u  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
153, 14sylbir 135 . . . . . . . . 9  |-  ( ( u  e.  A  /\  v  e.  B )  ->  u  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
1615expcom 116 . . . . . . . 8  |-  ( v  e.  B  ->  (
u  e.  A  ->  u  e.  ran  ( 1st  |`  ( A  X.  B
) ) ) )
1716exlimiv 1609 . . . . . . 7  |-  ( E. v  v  e.  B  ->  ( u  e.  A  ->  u  e.  ran  ( 1st  |`  ( A  X.  B ) ) ) )
1817ssrdv 3186 . . . . . 6  |-  ( E. v  v  e.  B  ->  A  C_  ran  ( 1st  |`  ( A  X.  B
) ) )
19 frn 5413 . . . . . . 7  |-  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) --> A  ->  ran  ( 1st  |`  ( A  X.  B ) )  C_  A )
209, 19ax-mp 5 . . . . . 6  |-  ran  ( 1st  |`  ( A  X.  B ) )  C_  A
2118, 20jctil 312 . . . . 5  |-  ( E. v  v  e.  B  ->  ( ran  ( 1st  |`  ( A  X.  B
) )  C_  A  /\  A  C_  ran  ( 1st  |`  ( A  X.  B ) ) ) )
22 eqss 3195 . . . . 5  |-  ( ran  ( 1st  |`  ( A  X.  B ) )  =  A  <->  ( ran  ( 1st  |`  ( A  X.  B ) )  C_  A  /\  A  C_  ran  ( 1st  |`  ( A  X.  B ) ) ) )
2321, 22sylibr 134 . . . 4  |-  ( E. v  v  e.  B  ->  ran  ( 1st  |`  ( A  X.  B ) )  =  A )
2423, 9jctil 312 . . 3  |-  ( E. v  v  e.  B  ->  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) --> A  /\  ran  ( 1st  |`  ( A  X.  B ) )  =  A ) )
25 dffo2 5481 . . 3  |-  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) -onto-> A  <->  ( ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B ) --> A  /\  ran  ( 1st  |`  ( A  X.  B ) )  =  A ) )
2624, 25sylibr 134 . 2  |-  ( E. v  v  e.  B  ->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> A )
272, 26sylbir 135 1  |-  ( E. y  y  e.  B  ->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164    C_ wss 3154   <.cop 3622    X. cxp 4658   ran crn 4661    |` cres 4662    Fn wfn 5250   -->wf 5251   -onto->wfo 5253   ` cfv 5255   1stc1st 6193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-1st 6195
This theorem is referenced by:  1stconst  6276
  Copyright terms: Public domain W3C validator