ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo1stresm Unicode version

Theorem fo1stresm 6109
Description: Onto mapping of a restriction of the  1st (first member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
Assertion
Ref Expression
fo1stresm  |-  ( E. y  y  e.  B  ->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> A )
Distinct variable group:    y, B
Allowed substitution hint:    A( y)

Proof of Theorem fo1stresm
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2220 . . 3  |-  ( v  =  y  ->  (
v  e.  B  <->  y  e.  B ) )
21cbvexv 1898 . 2  |-  ( E. v  v  e.  B  <->  E. y  y  e.  B
)
3 opelxp 4616 . . . . . . . . . 10  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  <->  ( u  e.  A  /\  v  e.  B ) )
4 fvres 5492 . . . . . . . . . . . 12  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  ( ( 1st  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  =  ( 1st `  <. u ,  v
>. ) )
5 vex 2715 . . . . . . . . . . . . 13  |-  u  e. 
_V
6 vex 2715 . . . . . . . . . . . . 13  |-  v  e. 
_V
75, 6op1st 6094 . . . . . . . . . . . 12  |-  ( 1st `  <. u ,  v
>. )  =  u
84, 7eqtr2di 2207 . . . . . . . . . . 11  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  u  =  ( ( 1st  |`  ( A  X.  B ) ) `
 <. u ,  v
>. ) )
9 f1stres 6107 . . . . . . . . . . . . 13  |-  ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B ) --> A
10 ffn 5319 . . . . . . . . . . . . 13  |-  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) --> A  ->  ( 1st  |`  ( A  X.  B ) )  Fn  ( A  X.  B
) )
119, 10ax-mp 5 . . . . . . . . . . . 12  |-  ( 1st  |`  ( A  X.  B
) )  Fn  ( A  X.  B )
12 fnfvelrn 5599 . . . . . . . . . . . 12  |-  ( ( ( 1st  |`  ( A  X.  B ) )  Fn  ( A  X.  B )  /\  <. u ,  v >.  e.  ( A  X.  B ) )  ->  ( ( 1st  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
1311, 12mpan 421 . . . . . . . . . . 11  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  ( ( 1st  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
148, 13eqeltrd 2234 . . . . . . . . . 10  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  u  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
153, 14sylbir 134 . . . . . . . . 9  |-  ( ( u  e.  A  /\  v  e.  B )  ->  u  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
1615expcom 115 . . . . . . . 8  |-  ( v  e.  B  ->  (
u  e.  A  ->  u  e.  ran  ( 1st  |`  ( A  X.  B
) ) ) )
1716exlimiv 1578 . . . . . . 7  |-  ( E. v  v  e.  B  ->  ( u  e.  A  ->  u  e.  ran  ( 1st  |`  ( A  X.  B ) ) ) )
1817ssrdv 3134 . . . . . 6  |-  ( E. v  v  e.  B  ->  A  C_  ran  ( 1st  |`  ( A  X.  B
) ) )
19 frn 5328 . . . . . . 7  |-  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) --> A  ->  ran  ( 1st  |`  ( A  X.  B ) )  C_  A )
209, 19ax-mp 5 . . . . . 6  |-  ran  ( 1st  |`  ( A  X.  B ) )  C_  A
2118, 20jctil 310 . . . . 5  |-  ( E. v  v  e.  B  ->  ( ran  ( 1st  |`  ( A  X.  B
) )  C_  A  /\  A  C_  ran  ( 1st  |`  ( A  X.  B ) ) ) )
22 eqss 3143 . . . . 5  |-  ( ran  ( 1st  |`  ( A  X.  B ) )  =  A  <->  ( ran  ( 1st  |`  ( A  X.  B ) )  C_  A  /\  A  C_  ran  ( 1st  |`  ( A  X.  B ) ) ) )
2321, 22sylibr 133 . . . 4  |-  ( E. v  v  e.  B  ->  ran  ( 1st  |`  ( A  X.  B ) )  =  A )
2423, 9jctil 310 . . 3  |-  ( E. v  v  e.  B  ->  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) --> A  /\  ran  ( 1st  |`  ( A  X.  B ) )  =  A ) )
25 dffo2 5396 . . 3  |-  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) -onto-> A  <->  ( ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B ) --> A  /\  ran  ( 1st  |`  ( A  X.  B ) )  =  A ) )
2624, 25sylibr 133 . 2  |-  ( E. v  v  e.  B  ->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> A )
272, 26sylbir 134 1  |-  ( E. y  y  e.  B  ->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335   E.wex 1472    e. wcel 2128    C_ wss 3102   <.cop 3563    X. cxp 4584   ran crn 4587    |` cres 4588    Fn wfn 5165   -->wf 5166   -onto->wfo 5168   ` cfv 5170   1stc1st 6086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-fo 5176  df-fv 5178  df-1st 6088
This theorem is referenced by:  1stconst  6168
  Copyright terms: Public domain W3C validator