Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fo1stresm | Unicode version |
Description: Onto mapping of a restriction of the (first member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.) |
Ref | Expression |
---|---|
fo1stresm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2229 | . . 3 | |
2 | 1 | cbvexv 1906 | . 2 |
3 | opelxp 4634 | . . . . . . . . . 10 | |
4 | fvres 5510 | . . . . . . . . . . . 12 | |
5 | vex 2729 | . . . . . . . . . . . . 13 | |
6 | vex 2729 | . . . . . . . . . . . . 13 | |
7 | 5, 6 | op1st 6114 | . . . . . . . . . . . 12 |
8 | 4, 7 | eqtr2di 2216 | . . . . . . . . . . 11 |
9 | f1stres 6127 | . . . . . . . . . . . . 13 | |
10 | ffn 5337 | . . . . . . . . . . . . 13 | |
11 | 9, 10 | ax-mp 5 | . . . . . . . . . . . 12 |
12 | fnfvelrn 5617 | . . . . . . . . . . . 12 | |
13 | 11, 12 | mpan 421 | . . . . . . . . . . 11 |
14 | 8, 13 | eqeltrd 2243 | . . . . . . . . . 10 |
15 | 3, 14 | sylbir 134 | . . . . . . . . 9 |
16 | 15 | expcom 115 | . . . . . . . 8 |
17 | 16 | exlimiv 1586 | . . . . . . 7 |
18 | 17 | ssrdv 3148 | . . . . . 6 |
19 | frn 5346 | . . . . . . 7 | |
20 | 9, 19 | ax-mp 5 | . . . . . 6 |
21 | 18, 20 | jctil 310 | . . . . 5 |
22 | eqss 3157 | . . . . 5 | |
23 | 21, 22 | sylibr 133 | . . . 4 |
24 | 23, 9 | jctil 310 | . . 3 |
25 | dffo2 5414 | . . 3 | |
26 | 24, 25 | sylibr 133 | . 2 |
27 | 2, 26 | sylbir 134 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wex 1480 wcel 2136 wss 3116 cop 3579 cxp 4602 crn 4605 cres 4606 wfn 5183 wf 5184 wfo 5186 cfv 5188 c1st 6106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 df-1st 6108 |
This theorem is referenced by: 1stconst 6189 |
Copyright terms: Public domain | W3C validator |