ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo1stresm Unicode version

Theorem fo1stresm 6270
Description: Onto mapping of a restriction of the  1st (first member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
Assertion
Ref Expression
fo1stresm  |-  ( E. y  y  e.  B  ->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> A )
Distinct variable group:    y, B
Allowed substitution hint:    A( y)

Proof of Theorem fo1stresm
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2270 . . 3  |-  ( v  =  y  ->  (
v  e.  B  <->  y  e.  B ) )
21cbvexv 1943 . 2  |-  ( E. v  v  e.  B  <->  E. y  y  e.  B
)
3 opelxp 4723 . . . . . . . . . 10  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  <->  ( u  e.  A  /\  v  e.  B ) )
4 fvres 5623 . . . . . . . . . . . 12  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  ( ( 1st  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  =  ( 1st `  <. u ,  v
>. ) )
5 vex 2779 . . . . . . . . . . . . 13  |-  u  e. 
_V
6 vex 2779 . . . . . . . . . . . . 13  |-  v  e. 
_V
75, 6op1st 6255 . . . . . . . . . . . 12  |-  ( 1st `  <. u ,  v
>. )  =  u
84, 7eqtr2di 2257 . . . . . . . . . . 11  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  u  =  ( ( 1st  |`  ( A  X.  B ) ) `
 <. u ,  v
>. ) )
9 f1stres 6268 . . . . . . . . . . . . 13  |-  ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B ) --> A
10 ffn 5445 . . . . . . . . . . . . 13  |-  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) --> A  ->  ( 1st  |`  ( A  X.  B ) )  Fn  ( A  X.  B
) )
119, 10ax-mp 5 . . . . . . . . . . . 12  |-  ( 1st  |`  ( A  X.  B
) )  Fn  ( A  X.  B )
12 fnfvelrn 5735 . . . . . . . . . . . 12  |-  ( ( ( 1st  |`  ( A  X.  B ) )  Fn  ( A  X.  B )  /\  <. u ,  v >.  e.  ( A  X.  B ) )  ->  ( ( 1st  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
1311, 12mpan 424 . . . . . . . . . . 11  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  ( ( 1st  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
148, 13eqeltrd 2284 . . . . . . . . . 10  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  u  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
153, 14sylbir 135 . . . . . . . . 9  |-  ( ( u  e.  A  /\  v  e.  B )  ->  u  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
1615expcom 116 . . . . . . . 8  |-  ( v  e.  B  ->  (
u  e.  A  ->  u  e.  ran  ( 1st  |`  ( A  X.  B
) ) ) )
1716exlimiv 1622 . . . . . . 7  |-  ( E. v  v  e.  B  ->  ( u  e.  A  ->  u  e.  ran  ( 1st  |`  ( A  X.  B ) ) ) )
1817ssrdv 3207 . . . . . 6  |-  ( E. v  v  e.  B  ->  A  C_  ran  ( 1st  |`  ( A  X.  B
) ) )
19 frn 5454 . . . . . . 7  |-  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) --> A  ->  ran  ( 1st  |`  ( A  X.  B ) )  C_  A )
209, 19ax-mp 5 . . . . . 6  |-  ran  ( 1st  |`  ( A  X.  B ) )  C_  A
2118, 20jctil 312 . . . . 5  |-  ( E. v  v  e.  B  ->  ( ran  ( 1st  |`  ( A  X.  B
) )  C_  A  /\  A  C_  ran  ( 1st  |`  ( A  X.  B ) ) ) )
22 eqss 3216 . . . . 5  |-  ( ran  ( 1st  |`  ( A  X.  B ) )  =  A  <->  ( ran  ( 1st  |`  ( A  X.  B ) )  C_  A  /\  A  C_  ran  ( 1st  |`  ( A  X.  B ) ) ) )
2321, 22sylibr 134 . . . 4  |-  ( E. v  v  e.  B  ->  ran  ( 1st  |`  ( A  X.  B ) )  =  A )
2423, 9jctil 312 . . 3  |-  ( E. v  v  e.  B  ->  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) --> A  /\  ran  ( 1st  |`  ( A  X.  B ) )  =  A ) )
25 dffo2 5524 . . 3  |-  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) -onto-> A  <->  ( ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B ) --> A  /\  ran  ( 1st  |`  ( A  X.  B ) )  =  A ) )
2624, 25sylibr 134 . 2  |-  ( E. v  v  e.  B  ->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> A )
272, 26sylbir 135 1  |-  ( E. y  y  e.  B  ->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2178    C_ wss 3174   <.cop 3646    X. cxp 4691   ran crn 4694    |` cres 4695    Fn wfn 5285   -->wf 5286   -onto->wfo 5288   ` cfv 5290   1stc1st 6247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fo 5296  df-fv 5298  df-1st 6249
This theorem is referenced by:  1stconst  6330
  Copyright terms: Public domain W3C validator