ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo1stresm Unicode version

Theorem fo1stresm 6052
Description: Onto mapping of a restriction of the  1st (first member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
Assertion
Ref Expression
fo1stresm  |-  ( E. y  y  e.  B  ->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> A )
Distinct variable group:    y, B
Allowed substitution hint:    A( y)

Proof of Theorem fo1stresm
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2200 . . 3  |-  ( v  =  y  ->  (
v  e.  B  <->  y  e.  B ) )
21cbvexv 1890 . 2  |-  ( E. v  v  e.  B  <->  E. y  y  e.  B
)
3 opelxp 4564 . . . . . . . . . 10  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  <->  ( u  e.  A  /\  v  e.  B ) )
4 fvres 5438 . . . . . . . . . . . 12  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  ( ( 1st  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  =  ( 1st `  <. u ,  v
>. ) )
5 vex 2684 . . . . . . . . . . . . 13  |-  u  e. 
_V
6 vex 2684 . . . . . . . . . . . . 13  |-  v  e. 
_V
75, 6op1st 6037 . . . . . . . . . . . 12  |-  ( 1st `  <. u ,  v
>. )  =  u
84, 7syl6req 2187 . . . . . . . . . . 11  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  u  =  ( ( 1st  |`  ( A  X.  B ) ) `
 <. u ,  v
>. ) )
9 f1stres 6050 . . . . . . . . . . . . 13  |-  ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B ) --> A
10 ffn 5267 . . . . . . . . . . . . 13  |-  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) --> A  ->  ( 1st  |`  ( A  X.  B ) )  Fn  ( A  X.  B
) )
119, 10ax-mp 5 . . . . . . . . . . . 12  |-  ( 1st  |`  ( A  X.  B
) )  Fn  ( A  X.  B )
12 fnfvelrn 5545 . . . . . . . . . . . 12  |-  ( ( ( 1st  |`  ( A  X.  B ) )  Fn  ( A  X.  B )  /\  <. u ,  v >.  e.  ( A  X.  B ) )  ->  ( ( 1st  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
1311, 12mpan 420 . . . . . . . . . . 11  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  ( ( 1st  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
148, 13eqeltrd 2214 . . . . . . . . . 10  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  u  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
153, 14sylbir 134 . . . . . . . . 9  |-  ( ( u  e.  A  /\  v  e.  B )  ->  u  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
1615expcom 115 . . . . . . . 8  |-  ( v  e.  B  ->  (
u  e.  A  ->  u  e.  ran  ( 1st  |`  ( A  X.  B
) ) ) )
1716exlimiv 1577 . . . . . . 7  |-  ( E. v  v  e.  B  ->  ( u  e.  A  ->  u  e.  ran  ( 1st  |`  ( A  X.  B ) ) ) )
1817ssrdv 3098 . . . . . 6  |-  ( E. v  v  e.  B  ->  A  C_  ran  ( 1st  |`  ( A  X.  B
) ) )
19 frn 5276 . . . . . . 7  |-  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) --> A  ->  ran  ( 1st  |`  ( A  X.  B ) )  C_  A )
209, 19ax-mp 5 . . . . . 6  |-  ran  ( 1st  |`  ( A  X.  B ) )  C_  A
2118, 20jctil 310 . . . . 5  |-  ( E. v  v  e.  B  ->  ( ran  ( 1st  |`  ( A  X.  B
) )  C_  A  /\  A  C_  ran  ( 1st  |`  ( A  X.  B ) ) ) )
22 eqss 3107 . . . . 5  |-  ( ran  ( 1st  |`  ( A  X.  B ) )  =  A  <->  ( ran  ( 1st  |`  ( A  X.  B ) )  C_  A  /\  A  C_  ran  ( 1st  |`  ( A  X.  B ) ) ) )
2321, 22sylibr 133 . . . 4  |-  ( E. v  v  e.  B  ->  ran  ( 1st  |`  ( A  X.  B ) )  =  A )
2423, 9jctil 310 . . 3  |-  ( E. v  v  e.  B  ->  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) --> A  /\  ran  ( 1st  |`  ( A  X.  B ) )  =  A ) )
25 dffo2 5344 . . 3  |-  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) -onto-> A  <->  ( ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B ) --> A  /\  ran  ( 1st  |`  ( A  X.  B ) )  =  A ) )
2624, 25sylibr 133 . 2  |-  ( E. v  v  e.  B  ->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> A )
272, 26sylbir 134 1  |-  ( E. y  y  e.  B  ->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331   E.wex 1468    e. wcel 1480    C_ wss 3066   <.cop 3525    X. cxp 4532   ran crn 4535    |` cres 4536    Fn wfn 5113   -->wf 5114   -onto->wfo 5116   ` cfv 5118   1stc1st 6029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fo 5124  df-fv 5126  df-1st 6031
This theorem is referenced by:  1stconst  6111
  Copyright terms: Public domain W3C validator