| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fof | Unicode version | ||
| Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| fof |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3278 |
. . 3
| |
| 2 | 1 | anim2i 342 |
. 2
|
| 3 | df-fo 5323 |
. 2
| |
| 4 | df-f 5321 |
. 2
| |
| 5 | 2, 3, 4 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-f 5321 df-fo 5323 |
| This theorem is referenced by: fofun 5548 fofn 5549 dffo2 5551 foima 5552 resdif 5593 ffoss 5603 fconstfvm 5856 cocan2 5911 foeqcnvco 5913 focdmex 6258 algrflem 6373 algrflemg 6374 tposf2 6412 mapsn 6835 ssdomg 6928 fopwdom 6993 fidcenumlemrks 7116 fidcenumlemr 7118 ctmlemr 7271 ctm 7272 ctssdclemn0 7273 ctssdccl 7274 ctssdc 7276 enumctlemm 7277 enumct 7278 fodjuomnilemdc 7307 exmidfodomrlemr 7376 exmidfodomrlemrALT 7377 suplocexprlemdisj 7903 suplocexprlemub 7906 wrdsymb 11094 ennnfonelemdc 12965 ennnfonelemg 12969 ennnfonelemp1 12972 ennnfonelemhdmp1 12975 ennnfonelemkh 12978 ennnfonelemhf1o 12979 ennnfonelemex 12980 ennnfonelemhom 12981 ctinfomlemom 12993 ctinf 12996 ctiunctlemudc 13003 ctiunctlemf 13004 omctfn 13009 imasival 13334 imasbas 13335 imasplusg 13336 imasmulr 13337 imasaddfnlemg 13342 imasaddvallemg 13343 imasaddflemg 13344 imasmnd2 13480 imasgrp2 13642 mhmid 13647 mhmmnd 13648 mhmfmhm 13649 ghmgrp 13650 ghmfghm 13858 imasring 14022 znunit 14617 znrrg 14618 dvrecap 15381 gausslemma2dlem1f1o 15733 subctctexmid 16325 pw1nct 16328 |
| Copyright terms: Public domain | W3C validator |