ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fof Unicode version

Theorem fof 5515
Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
fof  |-  ( F : A -onto-> B  ->  F : A --> B )

Proof of Theorem fof
StepHypRef Expression
1 eqimss 3251 . . 3  |-  ( ran 
F  =  B  ->  ran  F  C_  B )
21anim2i 342 . 2  |-  ( ( F  Fn  A  /\  ran  F  =  B )  ->  ( F  Fn  A  /\  ran  F  C_  B ) )
3 df-fo 5291 . 2  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
4 df-f 5289 . 2  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
52, 3, 43imtr4i 201 1  |-  ( F : A -onto-> B  ->  F : A --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    C_ wss 3170   ran crn 4689    Fn wfn 5280   -->wf 5281   -onto->wfo 5283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3176  df-ss 3183  df-f 5289  df-fo 5291
This theorem is referenced by:  fofun  5516  fofn  5517  dffo2  5519  foima  5520  resdif  5561  ffoss  5571  fconstfvm  5820  cocan2  5875  foeqcnvco  5877  focdmex  6218  algrflem  6333  algrflemg  6334  tposf2  6372  mapsn  6795  ssdomg  6888  fopwdom  6953  fidcenumlemrks  7076  fidcenumlemr  7078  ctmlemr  7231  ctm  7232  ctssdclemn0  7233  ctssdccl  7234  ctssdc  7236  enumctlemm  7237  enumct  7238  fodjuomnilemdc  7267  exmidfodomrlemr  7336  exmidfodomrlemrALT  7337  suplocexprlemdisj  7863  suplocexprlemub  7866  wrdsymb  11053  ennnfonelemdc  12855  ennnfonelemg  12859  ennnfonelemp1  12862  ennnfonelemhdmp1  12865  ennnfonelemkh  12868  ennnfonelemhf1o  12869  ennnfonelemex  12870  ennnfonelemhom  12871  ctinfomlemom  12883  ctinf  12886  ctiunctlemudc  12893  ctiunctlemf  12894  omctfn  12899  imasival  13223  imasbas  13224  imasplusg  13225  imasmulr  13226  imasaddfnlemg  13231  imasaddvallemg  13232  imasaddflemg  13233  imasmnd2  13369  imasgrp2  13531  mhmid  13536  mhmmnd  13537  mhmfmhm  13538  ghmgrp  13539  ghmfghm  13747  imasring  13911  znunit  14506  znrrg  14507  dvrecap  15270  gausslemma2dlem1f1o  15622  subctctexmid  16109  pw1nct  16112
  Copyright terms: Public domain W3C validator