| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fof | Unicode version | ||
| Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| fof |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3247 |
. . 3
| |
| 2 | 1 | anim2i 342 |
. 2
|
| 3 | df-fo 5277 |
. 2
| |
| 4 | df-f 5275 |
. 2
| |
| 5 | 2, 3, 4 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-f 5275 df-fo 5277 |
| This theorem is referenced by: fofun 5499 fofn 5500 dffo2 5502 foima 5503 resdif 5544 ffoss 5554 fconstfvm 5802 cocan2 5857 foeqcnvco 5859 focdmex 6200 algrflem 6315 algrflemg 6316 tposf2 6354 mapsn 6777 ssdomg 6870 fopwdom 6933 fidcenumlemrks 7055 fidcenumlemr 7057 ctmlemr 7210 ctm 7211 ctssdclemn0 7212 ctssdccl 7213 ctssdc 7215 enumctlemm 7216 enumct 7217 fodjuomnilemdc 7246 exmidfodomrlemr 7310 exmidfodomrlemrALT 7311 suplocexprlemdisj 7833 suplocexprlemub 7836 wrdsymb 11021 ennnfonelemdc 12770 ennnfonelemg 12774 ennnfonelemp1 12777 ennnfonelemhdmp1 12780 ennnfonelemkh 12783 ennnfonelemhf1o 12784 ennnfonelemex 12785 ennnfonelemhom 12786 ctinfomlemom 12798 ctinf 12801 ctiunctlemudc 12808 ctiunctlemf 12809 omctfn 12814 imasival 13138 imasbas 13139 imasplusg 13140 imasmulr 13141 imasaddfnlemg 13146 imasaddvallemg 13147 imasaddflemg 13148 imasmnd2 13284 imasgrp2 13446 mhmid 13451 mhmmnd 13452 mhmfmhm 13453 ghmgrp 13454 ghmfghm 13662 imasring 13826 znunit 14421 znrrg 14422 dvrecap 15185 gausslemma2dlem1f1o 15537 subctctexmid 15937 pw1nct 15940 |
| Copyright terms: Public domain | W3C validator |