| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fof | Unicode version | ||
| Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| fof |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3246 |
. . 3
| |
| 2 | 1 | anim2i 342 |
. 2
|
| 3 | df-fo 5276 |
. 2
| |
| 4 | df-f 5274 |
. 2
| |
| 5 | 2, 3, 4 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 df-f 5274 df-fo 5276 |
| This theorem is referenced by: fofun 5498 fofn 5499 dffo2 5501 foima 5502 resdif 5543 ffoss 5553 fconstfvm 5801 cocan2 5856 foeqcnvco 5858 focdmex 6199 algrflem 6314 algrflemg 6315 tposf2 6353 mapsn 6776 ssdomg 6869 fopwdom 6932 fidcenumlemrks 7054 fidcenumlemr 7056 ctmlemr 7209 ctm 7210 ctssdclemn0 7211 ctssdccl 7212 ctssdc 7214 enumctlemm 7215 enumct 7216 fodjuomnilemdc 7245 exmidfodomrlemr 7309 exmidfodomrlemrALT 7310 suplocexprlemdisj 7832 suplocexprlemub 7835 wrdsymb 11019 ennnfonelemdc 12741 ennnfonelemg 12745 ennnfonelemp1 12748 ennnfonelemhdmp1 12751 ennnfonelemkh 12754 ennnfonelemhf1o 12755 ennnfonelemex 12756 ennnfonelemhom 12757 ctinfomlemom 12769 ctinf 12772 ctiunctlemudc 12779 ctiunctlemf 12780 omctfn 12785 imasival 13109 imasbas 13110 imasplusg 13111 imasmulr 13112 imasaddfnlemg 13117 imasaddvallemg 13118 imasaddflemg 13119 imasmnd2 13255 imasgrp2 13417 mhmid 13422 mhmmnd 13423 mhmfmhm 13424 ghmgrp 13425 ghmfghm 13633 imasring 13797 znunit 14392 znrrg 14393 dvrecap 15156 gausslemma2dlem1f1o 15508 subctctexmid 15899 pw1nct 15902 |
| Copyright terms: Public domain | W3C validator |