| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fof | Unicode version | ||
| Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| fof |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3251 |
. . 3
| |
| 2 | 1 | anim2i 342 |
. 2
|
| 3 | df-fo 5291 |
. 2
| |
| 4 | df-f 5289 |
. 2
| |
| 5 | 2, 3, 4 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 df-f 5289 df-fo 5291 |
| This theorem is referenced by: fofun 5516 fofn 5517 dffo2 5519 foima 5520 resdif 5561 ffoss 5571 fconstfvm 5820 cocan2 5875 foeqcnvco 5877 focdmex 6218 algrflem 6333 algrflemg 6334 tposf2 6372 mapsn 6795 ssdomg 6888 fopwdom 6953 fidcenumlemrks 7076 fidcenumlemr 7078 ctmlemr 7231 ctm 7232 ctssdclemn0 7233 ctssdccl 7234 ctssdc 7236 enumctlemm 7237 enumct 7238 fodjuomnilemdc 7267 exmidfodomrlemr 7336 exmidfodomrlemrALT 7337 suplocexprlemdisj 7863 suplocexprlemub 7866 wrdsymb 11053 ennnfonelemdc 12855 ennnfonelemg 12859 ennnfonelemp1 12862 ennnfonelemhdmp1 12865 ennnfonelemkh 12868 ennnfonelemhf1o 12869 ennnfonelemex 12870 ennnfonelemhom 12871 ctinfomlemom 12883 ctinf 12886 ctiunctlemudc 12893 ctiunctlemf 12894 omctfn 12899 imasival 13223 imasbas 13224 imasplusg 13225 imasmulr 13226 imasaddfnlemg 13231 imasaddvallemg 13232 imasaddflemg 13233 imasmnd2 13369 imasgrp2 13531 mhmid 13536 mhmmnd 13537 mhmfmhm 13538 ghmgrp 13539 ghmfghm 13747 imasring 13911 znunit 14506 znrrg 14507 dvrecap 15270 gausslemma2dlem1f1o 15622 subctctexmid 16109 pw1nct 16112 |
| Copyright terms: Public domain | W3C validator |