![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fof | Unicode version |
Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
fof |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3234 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | anim2i 342 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | df-fo 5261 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | df-f 5259 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | 3imtr4i 201 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 df-f 5259 df-fo 5261 |
This theorem is referenced by: fofun 5478 fofn 5479 dffo2 5481 foima 5482 resdif 5523 ffoss 5533 fconstfvm 5777 cocan2 5832 foeqcnvco 5834 focdmex 6169 algrflem 6284 algrflemg 6285 tposf2 6323 mapsn 6746 ssdomg 6834 fopwdom 6894 fidcenumlemrks 7014 fidcenumlemr 7016 ctmlemr 7169 ctm 7170 ctssdclemn0 7171 ctssdccl 7172 ctssdc 7174 enumctlemm 7175 enumct 7176 fodjuomnilemdc 7205 exmidfodomrlemr 7264 exmidfodomrlemrALT 7265 suplocexprlemdisj 7782 suplocexprlemub 7785 wrdsymb 10944 ennnfonelemdc 12559 ennnfonelemg 12563 ennnfonelemp1 12566 ennnfonelemhdmp1 12569 ennnfonelemkh 12572 ennnfonelemhf1o 12573 ennnfonelemex 12574 ennnfonelemhom 12575 ctinfomlemom 12587 ctinf 12590 ctiunctlemudc 12597 ctiunctlemf 12598 omctfn 12603 imasival 12892 imasbas 12893 imasplusg 12894 imasmulr 12895 imasaddfnlemg 12900 imasaddvallemg 12901 imasaddflemg 12902 imasgrp2 13183 mhmid 13188 mhmmnd 13189 mhmfmhm 13190 ghmgrp 13191 ghmfghm 13399 imasring 13563 znunit 14158 znrrg 14159 dvrecap 14892 gausslemma2dlem1f1o 15217 subctctexmid 15561 pw1nct 15563 |
Copyright terms: Public domain | W3C validator |