| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fof | Unicode version | ||
| Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| fof |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3238 |
. . 3
| |
| 2 | 1 | anim2i 342 |
. 2
|
| 3 | df-fo 5265 |
. 2
| |
| 4 | df-f 5263 |
. 2
| |
| 5 | 2, 3, 4 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-f 5263 df-fo 5265 |
| This theorem is referenced by: fofun 5484 fofn 5485 dffo2 5487 foima 5488 resdif 5529 ffoss 5539 fconstfvm 5783 cocan2 5838 foeqcnvco 5840 focdmex 6181 algrflem 6296 algrflemg 6297 tposf2 6335 mapsn 6758 ssdomg 6846 fopwdom 6906 fidcenumlemrks 7028 fidcenumlemr 7030 ctmlemr 7183 ctm 7184 ctssdclemn0 7185 ctssdccl 7186 ctssdc 7188 enumctlemm 7189 enumct 7190 fodjuomnilemdc 7219 exmidfodomrlemr 7281 exmidfodomrlemrALT 7282 suplocexprlemdisj 7804 suplocexprlemub 7807 wrdsymb 10979 ennnfonelemdc 12641 ennnfonelemg 12645 ennnfonelemp1 12648 ennnfonelemhdmp1 12651 ennnfonelemkh 12654 ennnfonelemhf1o 12655 ennnfonelemex 12656 ennnfonelemhom 12657 ctinfomlemom 12669 ctinf 12672 ctiunctlemudc 12679 ctiunctlemf 12680 omctfn 12685 imasival 13008 imasbas 13009 imasplusg 13010 imasmulr 13011 imasaddfnlemg 13016 imasaddvallemg 13017 imasaddflemg 13018 imasmnd2 13154 imasgrp2 13316 mhmid 13321 mhmmnd 13322 mhmfmhm 13323 ghmgrp 13324 ghmfghm 13532 imasring 13696 znunit 14291 znrrg 14292 dvrecap 15033 gausslemma2dlem1f1o 15385 subctctexmid 15731 pw1nct 15734 |
| Copyright terms: Public domain | W3C validator |