ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2ndresm Unicode version

Theorem fo2ndresm 6308
Description: Onto mapping of a restriction of the  2nd (second member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
Assertion
Ref Expression
fo2ndresm  |-  ( E. x  x  e.  A  ->  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> B )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem fo2ndresm
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2292 . . 3  |-  ( u  =  x  ->  (
u  e.  A  <->  x  e.  A ) )
21cbvexv 1965 . 2  |-  ( E. u  u  e.  A  <->  E. x  x  e.  A
)
3 opelxp 4749 . . . . . . . . . 10  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  <->  ( u  e.  A  /\  v  e.  B ) )
4 fvres 5651 . . . . . . . . . . . 12  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  ( ( 2nd  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  =  ( 2nd `  <. u ,  v
>. ) )
5 vex 2802 . . . . . . . . . . . . 13  |-  u  e. 
_V
6 vex 2802 . . . . . . . . . . . . 13  |-  v  e. 
_V
75, 6op2nd 6293 . . . . . . . . . . . 12  |-  ( 2nd `  <. u ,  v
>. )  =  v
84, 7eqtr2di 2279 . . . . . . . . . . 11  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  v  =  ( ( 2nd  |`  ( A  X.  B ) ) `
 <. u ,  v
>. ) )
9 f2ndres 6306 . . . . . . . . . . . . 13  |-  ( 2nd  |`  ( A  X.  B
) ) : ( A  X.  B ) --> B
10 ffn 5473 . . . . . . . . . . . . 13  |-  ( ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B
) --> B  ->  ( 2nd  |`  ( A  X.  B ) )  Fn  ( A  X.  B
) )
119, 10ax-mp 5 . . . . . . . . . . . 12  |-  ( 2nd  |`  ( A  X.  B
) )  Fn  ( A  X.  B )
12 fnfvelrn 5767 . . . . . . . . . . . 12  |-  ( ( ( 2nd  |`  ( A  X.  B ) )  Fn  ( A  X.  B )  /\  <. u ,  v >.  e.  ( A  X.  B ) )  ->  ( ( 2nd  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  e.  ran  ( 2nd  |`  ( A  X.  B ) ) )
1311, 12mpan 424 . . . . . . . . . . 11  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  ( ( 2nd  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  e.  ran  ( 2nd  |`  ( A  X.  B ) ) )
148, 13eqeltrd 2306 . . . . . . . . . 10  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  v  e.  ran  ( 2nd  |`  ( A  X.  B ) ) )
153, 14sylbir 135 . . . . . . . . 9  |-  ( ( u  e.  A  /\  v  e.  B )  ->  v  e.  ran  ( 2nd  |`  ( A  X.  B ) ) )
1615ex 115 . . . . . . . 8  |-  ( u  e.  A  ->  (
v  e.  B  -> 
v  e.  ran  ( 2nd  |`  ( A  X.  B ) ) ) )
1716exlimiv 1644 . . . . . . 7  |-  ( E. u  u  e.  A  ->  ( v  e.  B  ->  v  e.  ran  ( 2nd  |`  ( A  X.  B ) ) ) )
1817ssrdv 3230 . . . . . 6  |-  ( E. u  u  e.  A  ->  B  C_  ran  ( 2nd  |`  ( A  X.  B
) ) )
19 frn 5482 . . . . . . 7  |-  ( ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B
) --> B  ->  ran  ( 2nd  |`  ( A  X.  B ) )  C_  B )
209, 19ax-mp 5 . . . . . 6  |-  ran  ( 2nd  |`  ( A  X.  B ) )  C_  B
2118, 20jctil 312 . . . . 5  |-  ( E. u  u  e.  A  ->  ( ran  ( 2nd  |`  ( A  X.  B
) )  C_  B  /\  B  C_  ran  ( 2nd  |`  ( A  X.  B ) ) ) )
22 eqss 3239 . . . . 5  |-  ( ran  ( 2nd  |`  ( A  X.  B ) )  =  B  <->  ( ran  ( 2nd  |`  ( A  X.  B ) )  C_  B  /\  B  C_  ran  ( 2nd  |`  ( A  X.  B ) ) ) )
2321, 22sylibr 134 . . . 4  |-  ( E. u  u  e.  A  ->  ran  ( 2nd  |`  ( A  X.  B ) )  =  B )
2423, 9jctil 312 . . 3  |-  ( E. u  u  e.  A  ->  ( ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) --> B  /\  ran  ( 2nd  |`  ( A  X.  B ) )  =  B ) )
25 dffo2 5552 . . 3  |-  ( ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B
) -onto-> B  <->  ( ( 2nd  |`  ( A  X.  B
) ) : ( A  X.  B ) --> B  /\  ran  ( 2nd  |`  ( A  X.  B ) )  =  B ) )
2624, 25sylibr 134 . 2  |-  ( E. u  u  e.  A  ->  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> B )
272, 26sylbir 135 1  |-  ( E. x  x  e.  A  ->  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200    C_ wss 3197   <.cop 3669    X. cxp 4717   ran crn 4720    |` cres 4721    Fn wfn 5313   -->wf 5314   -onto->wfo 5316   ` cfv 5318   2ndc2nd 6285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-2nd 6287
This theorem is referenced by:  2ndconst  6368
  Copyright terms: Public domain W3C validator