ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2ndresm Unicode version

Theorem fo2ndresm 6060
Description: Onto mapping of a restriction of the  2nd (second member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
Assertion
Ref Expression
fo2ndresm  |-  ( E. x  x  e.  A  ->  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> B )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem fo2ndresm
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2202 . . 3  |-  ( u  =  x  ->  (
u  e.  A  <->  x  e.  A ) )
21cbvexv 1890 . 2  |-  ( E. u  u  e.  A  <->  E. x  x  e.  A
)
3 opelxp 4569 . . . . . . . . . 10  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  <->  ( u  e.  A  /\  v  e.  B ) )
4 fvres 5445 . . . . . . . . . . . 12  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  ( ( 2nd  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  =  ( 2nd `  <. u ,  v
>. ) )
5 vex 2689 . . . . . . . . . . . . 13  |-  u  e. 
_V
6 vex 2689 . . . . . . . . . . . . 13  |-  v  e. 
_V
75, 6op2nd 6045 . . . . . . . . . . . 12  |-  ( 2nd `  <. u ,  v
>. )  =  v
84, 7syl6req 2189 . . . . . . . . . . 11  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  v  =  ( ( 2nd  |`  ( A  X.  B ) ) `
 <. u ,  v
>. ) )
9 f2ndres 6058 . . . . . . . . . . . . 13  |-  ( 2nd  |`  ( A  X.  B
) ) : ( A  X.  B ) --> B
10 ffn 5272 . . . . . . . . . . . . 13  |-  ( ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B
) --> B  ->  ( 2nd  |`  ( A  X.  B ) )  Fn  ( A  X.  B
) )
119, 10ax-mp 5 . . . . . . . . . . . 12  |-  ( 2nd  |`  ( A  X.  B
) )  Fn  ( A  X.  B )
12 fnfvelrn 5552 . . . . . . . . . . . 12  |-  ( ( ( 2nd  |`  ( A  X.  B ) )  Fn  ( A  X.  B )  /\  <. u ,  v >.  e.  ( A  X.  B ) )  ->  ( ( 2nd  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  e.  ran  ( 2nd  |`  ( A  X.  B ) ) )
1311, 12mpan 420 . . . . . . . . . . 11  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  ( ( 2nd  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  e.  ran  ( 2nd  |`  ( A  X.  B ) ) )
148, 13eqeltrd 2216 . . . . . . . . . 10  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  v  e.  ran  ( 2nd  |`  ( A  X.  B ) ) )
153, 14sylbir 134 . . . . . . . . 9  |-  ( ( u  e.  A  /\  v  e.  B )  ->  v  e.  ran  ( 2nd  |`  ( A  X.  B ) ) )
1615ex 114 . . . . . . . 8  |-  ( u  e.  A  ->  (
v  e.  B  -> 
v  e.  ran  ( 2nd  |`  ( A  X.  B ) ) ) )
1716exlimiv 1577 . . . . . . 7  |-  ( E. u  u  e.  A  ->  ( v  e.  B  ->  v  e.  ran  ( 2nd  |`  ( A  X.  B ) ) ) )
1817ssrdv 3103 . . . . . 6  |-  ( E. u  u  e.  A  ->  B  C_  ran  ( 2nd  |`  ( A  X.  B
) ) )
19 frn 5281 . . . . . . 7  |-  ( ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B
) --> B  ->  ran  ( 2nd  |`  ( A  X.  B ) )  C_  B )
209, 19ax-mp 5 . . . . . 6  |-  ran  ( 2nd  |`  ( A  X.  B ) )  C_  B
2118, 20jctil 310 . . . . 5  |-  ( E. u  u  e.  A  ->  ( ran  ( 2nd  |`  ( A  X.  B
) )  C_  B  /\  B  C_  ran  ( 2nd  |`  ( A  X.  B ) ) ) )
22 eqss 3112 . . . . 5  |-  ( ran  ( 2nd  |`  ( A  X.  B ) )  =  B  <->  ( ran  ( 2nd  |`  ( A  X.  B ) )  C_  B  /\  B  C_  ran  ( 2nd  |`  ( A  X.  B ) ) ) )
2321, 22sylibr 133 . . . 4  |-  ( E. u  u  e.  A  ->  ran  ( 2nd  |`  ( A  X.  B ) )  =  B )
2423, 9jctil 310 . . 3  |-  ( E. u  u  e.  A  ->  ( ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) --> B  /\  ran  ( 2nd  |`  ( A  X.  B ) )  =  B ) )
25 dffo2 5349 . . 3  |-  ( ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B
) -onto-> B  <->  ( ( 2nd  |`  ( A  X.  B
) ) : ( A  X.  B ) --> B  /\  ran  ( 2nd  |`  ( A  X.  B ) )  =  B ) )
2624, 25sylibr 133 . 2  |-  ( E. u  u  e.  A  ->  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> B )
272, 26sylbir 134 1  |-  ( E. x  x  e.  A  ->  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331   E.wex 1468    e. wcel 1480    C_ wss 3071   <.cop 3530    X. cxp 4537   ran crn 4540    |` cres 4541    Fn wfn 5118   -->wf 5119   -onto->wfo 5121   ` cfv 5123   2ndc2nd 6037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fo 5129  df-fv 5131  df-2nd 6039
This theorem is referenced by:  2ndconst  6119
  Copyright terms: Public domain W3C validator