ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2ndresm Unicode version

Theorem fo2ndresm 6215
Description: Onto mapping of a restriction of the  2nd (second member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
Assertion
Ref Expression
fo2ndresm  |-  ( E. x  x  e.  A  ->  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> B )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem fo2ndresm
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2256 . . 3  |-  ( u  =  x  ->  (
u  e.  A  <->  x  e.  A ) )
21cbvexv 1930 . 2  |-  ( E. u  u  e.  A  <->  E. x  x  e.  A
)
3 opelxp 4689 . . . . . . . . . 10  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  <->  ( u  e.  A  /\  v  e.  B ) )
4 fvres 5578 . . . . . . . . . . . 12  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  ( ( 2nd  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  =  ( 2nd `  <. u ,  v
>. ) )
5 vex 2763 . . . . . . . . . . . . 13  |-  u  e. 
_V
6 vex 2763 . . . . . . . . . . . . 13  |-  v  e. 
_V
75, 6op2nd 6200 . . . . . . . . . . . 12  |-  ( 2nd `  <. u ,  v
>. )  =  v
84, 7eqtr2di 2243 . . . . . . . . . . 11  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  v  =  ( ( 2nd  |`  ( A  X.  B ) ) `
 <. u ,  v
>. ) )
9 f2ndres 6213 . . . . . . . . . . . . 13  |-  ( 2nd  |`  ( A  X.  B
) ) : ( A  X.  B ) --> B
10 ffn 5403 . . . . . . . . . . . . 13  |-  ( ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B
) --> B  ->  ( 2nd  |`  ( A  X.  B ) )  Fn  ( A  X.  B
) )
119, 10ax-mp 5 . . . . . . . . . . . 12  |-  ( 2nd  |`  ( A  X.  B
) )  Fn  ( A  X.  B )
12 fnfvelrn 5690 . . . . . . . . . . . 12  |-  ( ( ( 2nd  |`  ( A  X.  B ) )  Fn  ( A  X.  B )  /\  <. u ,  v >.  e.  ( A  X.  B ) )  ->  ( ( 2nd  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  e.  ran  ( 2nd  |`  ( A  X.  B ) ) )
1311, 12mpan 424 . . . . . . . . . . 11  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  ( ( 2nd  |`  ( A  X.  B ) ) `  <. u ,  v >.
)  e.  ran  ( 2nd  |`  ( A  X.  B ) ) )
148, 13eqeltrd 2270 . . . . . . . . . 10  |-  ( <.
u ,  v >.  e.  ( A  X.  B
)  ->  v  e.  ran  ( 2nd  |`  ( A  X.  B ) ) )
153, 14sylbir 135 . . . . . . . . 9  |-  ( ( u  e.  A  /\  v  e.  B )  ->  v  e.  ran  ( 2nd  |`  ( A  X.  B ) ) )
1615ex 115 . . . . . . . 8  |-  ( u  e.  A  ->  (
v  e.  B  -> 
v  e.  ran  ( 2nd  |`  ( A  X.  B ) ) ) )
1716exlimiv 1609 . . . . . . 7  |-  ( E. u  u  e.  A  ->  ( v  e.  B  ->  v  e.  ran  ( 2nd  |`  ( A  X.  B ) ) ) )
1817ssrdv 3185 . . . . . 6  |-  ( E. u  u  e.  A  ->  B  C_  ran  ( 2nd  |`  ( A  X.  B
) ) )
19 frn 5412 . . . . . . 7  |-  ( ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B
) --> B  ->  ran  ( 2nd  |`  ( A  X.  B ) )  C_  B )
209, 19ax-mp 5 . . . . . 6  |-  ran  ( 2nd  |`  ( A  X.  B ) )  C_  B
2118, 20jctil 312 . . . . 5  |-  ( E. u  u  e.  A  ->  ( ran  ( 2nd  |`  ( A  X.  B
) )  C_  B  /\  B  C_  ran  ( 2nd  |`  ( A  X.  B ) ) ) )
22 eqss 3194 . . . . 5  |-  ( ran  ( 2nd  |`  ( A  X.  B ) )  =  B  <->  ( ran  ( 2nd  |`  ( A  X.  B ) )  C_  B  /\  B  C_  ran  ( 2nd  |`  ( A  X.  B ) ) ) )
2321, 22sylibr 134 . . . 4  |-  ( E. u  u  e.  A  ->  ran  ( 2nd  |`  ( A  X.  B ) )  =  B )
2423, 9jctil 312 . . 3  |-  ( E. u  u  e.  A  ->  ( ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) --> B  /\  ran  ( 2nd  |`  ( A  X.  B ) )  =  B ) )
25 dffo2 5480 . . 3  |-  ( ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B
) -onto-> B  <->  ( ( 2nd  |`  ( A  X.  B
) ) : ( A  X.  B ) --> B  /\  ran  ( 2nd  |`  ( A  X.  B ) )  =  B ) )
2624, 25sylibr 134 . 2  |-  ( E. u  u  e.  A  ->  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> B )
272, 26sylbir 135 1  |-  ( E. x  x  e.  A  ->  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164    C_ wss 3153   <.cop 3621    X. cxp 4657   ran crn 4660    |` cres 4661    Fn wfn 5249   -->wf 5250   -onto->wfo 5252   ` cfv 5254   2ndc2nd 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262  df-2nd 6194
This theorem is referenced by:  2ndconst  6275
  Copyright terms: Public domain W3C validator