ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foco Unicode version

Theorem foco 5559
Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
foco  |-  ( ( F : B -onto-> C  /\  G : A -onto-> B
)  ->  ( F  o.  G ) : A -onto-> C )

Proof of Theorem foco
StepHypRef Expression
1 dffo2 5552 . . 3  |-  ( F : B -onto-> C  <->  ( F : B --> C  /\  ran  F  =  C ) )
2 dffo2 5552 . . 3  |-  ( G : A -onto-> B  <->  ( G : A --> B  /\  ran  G  =  B ) )
3 fco 5489 . . . . 5  |-  ( ( F : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )
43ad2ant2r 509 . . . 4  |-  ( ( ( F : B --> C  /\  ran  F  =  C )  /\  ( G : A --> B  /\  ran  G  =  B ) )  ->  ( F  o.  G ) : A --> C )
5 fdm 5479 . . . . . . . 8  |-  ( F : B --> C  ->  dom  F  =  B )
6 eqtr3 2249 . . . . . . . 8  |-  ( ( dom  F  =  B  /\  ran  G  =  B )  ->  dom  F  =  ran  G )
75, 6sylan 283 . . . . . . 7  |-  ( ( F : B --> C  /\  ran  G  =  B )  ->  dom  F  =  ran  G )
8 rncoeq 4998 . . . . . . . . 9  |-  ( dom 
F  =  ran  G  ->  ran  ( F  o.  G )  =  ran  F )
98eqeq1d 2238 . . . . . . . 8  |-  ( dom 
F  =  ran  G  ->  ( ran  ( F  o.  G )  =  C  <->  ran  F  =  C ) )
109biimpar 297 . . . . . . 7  |-  ( ( dom  F  =  ran  G  /\  ran  F  =  C )  ->  ran  ( F  o.  G
)  =  C )
117, 10sylan 283 . . . . . 6  |-  ( ( ( F : B --> C  /\  ran  G  =  B )  /\  ran  F  =  C )  ->  ran  ( F  o.  G
)  =  C )
1211an32s 568 . . . . 5  |-  ( ( ( F : B --> C  /\  ran  F  =  C )  /\  ran  G  =  B )  ->  ran  ( F  o.  G
)  =  C )
1312adantrl 478 . . . 4  |-  ( ( ( F : B --> C  /\  ran  F  =  C )  /\  ( G : A --> B  /\  ran  G  =  B ) )  ->  ran  ( F  o.  G )  =  C )
144, 13jca 306 . . 3  |-  ( ( ( F : B --> C  /\  ran  F  =  C )  /\  ( G : A --> B  /\  ran  G  =  B ) )  ->  ( ( F  o.  G ) : A --> C  /\  ran  ( F  o.  G
)  =  C ) )
151, 2, 14syl2anb 291 . 2  |-  ( ( F : B -onto-> C  /\  G : A -onto-> B
)  ->  ( ( F  o.  G ) : A --> C  /\  ran  ( F  o.  G
)  =  C ) )
16 dffo2 5552 . 2  |-  ( ( F  o.  G ) : A -onto-> C  <->  ( ( F  o.  G ) : A --> C  /\  ran  ( F  o.  G
)  =  C ) )
1715, 16sylibr 134 1  |-  ( ( F : B -onto-> C  /\  G : A -onto-> B
)  ->  ( F  o.  G ) : A -onto-> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   dom cdm 4719   ran crn 4720    o. ccom 4723   -->wf 5314   -onto->wfo 5316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324
This theorem is referenced by:  f1oco  5595  nninfct  12562  ennnfonelemnn0  12993  ctinfomlemom  12998  qnnen  13002  enctlem  13003
  Copyright terms: Public domain W3C validator