ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foco Unicode version

Theorem foco 5448
Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
foco  |-  ( ( F : B -onto-> C  /\  G : A -onto-> B
)  ->  ( F  o.  G ) : A -onto-> C )

Proof of Theorem foco
StepHypRef Expression
1 dffo2 5442 . . 3  |-  ( F : B -onto-> C  <->  ( F : B --> C  /\  ran  F  =  C ) )
2 dffo2 5442 . . 3  |-  ( G : A -onto-> B  <->  ( G : A --> B  /\  ran  G  =  B ) )
3 fco 5381 . . . . 5  |-  ( ( F : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )
43ad2ant2r 509 . . . 4  |-  ( ( ( F : B --> C  /\  ran  F  =  C )  /\  ( G : A --> B  /\  ran  G  =  B ) )  ->  ( F  o.  G ) : A --> C )
5 fdm 5371 . . . . . . . 8  |-  ( F : B --> C  ->  dom  F  =  B )
6 eqtr3 2197 . . . . . . . 8  |-  ( ( dom  F  =  B  /\  ran  G  =  B )  ->  dom  F  =  ran  G )
75, 6sylan 283 . . . . . . 7  |-  ( ( F : B --> C  /\  ran  G  =  B )  ->  dom  F  =  ran  G )
8 rncoeq 4900 . . . . . . . . 9  |-  ( dom 
F  =  ran  G  ->  ran  ( F  o.  G )  =  ran  F )
98eqeq1d 2186 . . . . . . . 8  |-  ( dom 
F  =  ran  G  ->  ( ran  ( F  o.  G )  =  C  <->  ran  F  =  C ) )
109biimpar 297 . . . . . . 7  |-  ( ( dom  F  =  ran  G  /\  ran  F  =  C )  ->  ran  ( F  o.  G
)  =  C )
117, 10sylan 283 . . . . . 6  |-  ( ( ( F : B --> C  /\  ran  G  =  B )  /\  ran  F  =  C )  ->  ran  ( F  o.  G
)  =  C )
1211an32s 568 . . . . 5  |-  ( ( ( F : B --> C  /\  ran  F  =  C )  /\  ran  G  =  B )  ->  ran  ( F  o.  G
)  =  C )
1312adantrl 478 . . . 4  |-  ( ( ( F : B --> C  /\  ran  F  =  C )  /\  ( G : A --> B  /\  ran  G  =  B ) )  ->  ran  ( F  o.  G )  =  C )
144, 13jca 306 . . 3  |-  ( ( ( F : B --> C  /\  ran  F  =  C )  /\  ( G : A --> B  /\  ran  G  =  B ) )  ->  ( ( F  o.  G ) : A --> C  /\  ran  ( F  o.  G
)  =  C ) )
151, 2, 14syl2anb 291 . 2  |-  ( ( F : B -onto-> C  /\  G : A -onto-> B
)  ->  ( ( F  o.  G ) : A --> C  /\  ran  ( F  o.  G
)  =  C ) )
16 dffo2 5442 . 2  |-  ( ( F  o.  G ) : A -onto-> C  <->  ( ( F  o.  G ) : A --> C  /\  ran  ( F  o.  G
)  =  C ) )
1715, 16sylibr 134 1  |-  ( ( F : B -onto-> C  /\  G : A -onto-> B
)  ->  ( F  o.  G ) : A -onto-> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   dom cdm 4626   ran crn 4627    o. ccom 4630   -->wf 5212   -onto->wfo 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-br 4004  df-opab 4065  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-fun 5218  df-fn 5219  df-f 5220  df-fo 5222
This theorem is referenced by:  f1oco  5484  ennnfonelemnn0  12417  ctinfomlemom  12422  qnnen  12426  enctlem  12427
  Copyright terms: Public domain W3C validator