ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difinfinf Unicode version

Theorem difinfinf 7131
Description: An infinite set minus a finite subset is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
Assertion
Ref Expression
difinfinf  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  om 
~<_  ( A  \  B
) )
Distinct variable group:    x, A, y
Allowed substitution hints:    B( x, y)

Proof of Theorem difinfinf
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 3262 . . 3  |-  ( w  =  (/)  ->  ( A 
\  w )  =  ( A  \  (/) ) )
21breq2d 4030 . 2  |-  ( w  =  (/)  ->  ( om  ~<_  ( A  \  w
)  <->  om  ~<_  ( A  \  (/) ) ) )
3 difeq2 3262 . . 3  |-  ( w  =  u  ->  ( A  \  w )  =  ( A  \  u
) )
43breq2d 4030 . 2  |-  ( w  =  u  ->  ( om 
~<_  ( A  \  w
)  <->  om  ~<_  ( A  \  u ) ) )
5 difeq2 3262 . . 3  |-  ( w  =  ( u  u. 
{ v } )  ->  ( A  \  w )  =  ( A  \  ( u  u.  { v } ) ) )
65breq2d 4030 . 2  |-  ( w  =  ( u  u. 
{ v } )  ->  ( om  ~<_  ( A 
\  w )  <->  om  ~<_  ( A 
\  ( u  u. 
{ v } ) ) ) )
7 difeq2 3262 . . 3  |-  ( w  =  B  ->  ( A  \  w )  =  ( A  \  B
) )
87breq2d 4030 . 2  |-  ( w  =  B  ->  ( om 
~<_  ( A  \  w
)  <->  om  ~<_  ( A  \  B ) ) )
9 simplr 528 . . 3  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  om 
~<_  A )
10 dif0 3508 . . 3  |-  ( A 
\  (/) )  =  A
119, 10breqtrrdi 4060 . 2  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  om 
~<_  ( A  \  (/) ) )
12 difss 3276 . . . . . . 7  |-  ( A 
\  u )  C_  A
13 ssralv 3234 . . . . . . . . 9  |-  ( ( A  \  u ) 
C_  A  ->  ( A. y  e.  A DECID  x  =  y  ->  A. y  e.  ( A  \  u
)DECID  x  =  y ) )
1412, 13ax-mp 5 . . . . . . . 8  |-  ( A. y  e.  A DECID  x  =  y  ->  A. y  e.  ( A  \  u )DECID  x  =  y )
1514ralimi 2553 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  ->  A. x  e.  A  A. y  e.  ( A  \  u )DECID  x  =  y )
16 ssralv 3234 . . . . . . 7  |-  ( ( A  \  u ) 
C_  A  ->  ( A. x  e.  A  A. y  e.  ( A  \  u )DECID  x  =  y  ->  A. x  e.  ( A  \  u
) A. y  e.  ( A  \  u
)DECID  x  =  y ) )
1712, 15, 16mpsyl 65 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  ->  A. x  e.  ( A  \  u ) A. y  e.  ( A  \  u )DECID  x  =  y )
1817ad5antr 496 . . . . 5  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  A. x  e.  ( A  \  u ) A. y  e.  ( A  \  u )DECID  x  =  y )
19 simpr 110 . . . . 5  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  om  ~<_  ( A  \  u ) )
20 simprl 529 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  B  C_  A )
2120ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  B  C_  A
)
22 simplrr 536 . . . . . 6  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  v  e.  ( B  \  u ) )
23 ssdif 3285 . . . . . . 7  |-  ( B 
C_  A  ->  ( B  \  u )  C_  ( A  \  u
) )
2423sseld 3169 . . . . . 6  |-  ( B 
C_  A  ->  (
v  e.  ( B 
\  u )  -> 
v  e.  ( A 
\  u ) ) )
2521, 22, 24sylc 62 . . . . 5  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  v  e.  ( A  \  u ) )
26 difinfsn 7130 . . . . 5  |-  ( ( A. x  e.  ( A  \  u ) A. y  e.  ( A  \  u )DECID  x  =  y  /\  om  ~<_  ( A  \  u
)  /\  v  e.  ( A  \  u
) )  ->  om  ~<_  ( ( A  \  u ) 
\  { v } ) )
2718, 19, 25, 26syl3anc 1249 . . . 4  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  om  ~<_  ( ( A  \  u )  \  { v } ) )
28 difun1 3410 . . . 4  |-  ( A 
\  ( u  u. 
{ v } ) )  =  ( ( A  \  u ) 
\  { v } )
2927, 28breqtrrdi 4060 . . 3  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  om  ~<_  ( A  \  ( u  u.  {
v } ) ) )
3029ex 115 . 2  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  ->  ( om  ~<_  ( A 
\  u )  ->  om 
~<_  ( A  \  (
u  u.  { v } ) ) ) )
31 simprr 531 . 2  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  B  e.  Fin )
322, 4, 6, 8, 11, 30, 31findcard2sd 6921 1  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  om 
~<_  ( A  \  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2160   A.wral 2468    \ cdif 3141    u. cun 3142    C_ wss 3144   (/)c0 3437   {csn 3607   class class class wbr 4018   omcom 4607    ~<_ cdom 6766   Fincfn 6767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-1st 6166  df-2nd 6167  df-1o 6442  df-er 6560  df-en 6768  df-dom 6769  df-fin 6770  df-dju 7068  df-inl 7077  df-inr 7078  df-case 7114
This theorem is referenced by:  inffinp1  12483
  Copyright terms: Public domain W3C validator