Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difinfinf | Unicode version |
Description: An infinite set minus a finite subset is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.) |
Ref | Expression |
---|---|
difinfinf | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq2 3234 | . . 3 | |
2 | 1 | breq2d 3994 | . 2 |
3 | difeq2 3234 | . . 3 | |
4 | 3 | breq2d 3994 | . 2 |
5 | difeq2 3234 | . . 3 | |
6 | 5 | breq2d 3994 | . 2 |
7 | difeq2 3234 | . . 3 | |
8 | 7 | breq2d 3994 | . 2 |
9 | simplr 520 | . . 3 DECID | |
10 | dif0 3479 | . . 3 | |
11 | 9, 10 | breqtrrdi 4024 | . 2 DECID |
12 | difss 3248 | . . . . . . 7 | |
13 | ssralv 3206 | . . . . . . . . 9 DECID DECID | |
14 | 12, 13 | ax-mp 5 | . . . . . . . 8 DECID DECID |
15 | 14 | ralimi 2529 | . . . . . . 7 DECID DECID |
16 | ssralv 3206 | . . . . . . 7 DECID DECID | |
17 | 12, 15, 16 | mpsyl 65 | . . . . . 6 DECID DECID |
18 | 17 | ad5antr 488 | . . . . 5 DECID DECID |
19 | simpr 109 | . . . . 5 DECID | |
20 | simprl 521 | . . . . . . 7 DECID | |
21 | 20 | ad3antrrr 484 | . . . . . 6 DECID |
22 | simplrr 526 | . . . . . 6 DECID | |
23 | ssdif 3257 | . . . . . . 7 | |
24 | 23 | sseld 3141 | . . . . . 6 |
25 | 21, 22, 24 | sylc 62 | . . . . 5 DECID |
26 | difinfsn 7065 | . . . . 5 DECID | |
27 | 18, 19, 25, 26 | syl3anc 1228 | . . . 4 DECID |
28 | difun1 3382 | . . . 4 | |
29 | 27, 28 | breqtrrdi 4024 | . . 3 DECID |
30 | 29 | ex 114 | . 2 DECID |
31 | simprr 522 | . 2 DECID | |
32 | 2, 4, 6, 8, 11, 30, 31 | findcard2sd 6858 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 DECID wdc 824 wceq 1343 wcel 2136 wral 2444 cdif 3113 cun 3114 wss 3116 c0 3409 csn 3576 class class class wbr 3982 com 4567 cdom 6705 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 df-dju 7003 df-inl 7012 df-inr 7013 df-case 7049 |
This theorem is referenced by: inffinp1 12362 |
Copyright terms: Public domain | W3C validator |