| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difinfinf | Unicode version | ||
| Description: An infinite set minus a finite subset is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.) |
| Ref | Expression |
|---|---|
| difinfinf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq2 3289 |
. . 3
| |
| 2 | 1 | breq2d 4063 |
. 2
|
| 3 | difeq2 3289 |
. . 3
| |
| 4 | 3 | breq2d 4063 |
. 2
|
| 5 | difeq2 3289 |
. . 3
| |
| 6 | 5 | breq2d 4063 |
. 2
|
| 7 | difeq2 3289 |
. . 3
| |
| 8 | 7 | breq2d 4063 |
. 2
|
| 9 | simplr 528 |
. . 3
| |
| 10 | dif0 3535 |
. . 3
| |
| 11 | 9, 10 | breqtrrdi 4093 |
. 2
|
| 12 | difss 3303 |
. . . . . . 7
| |
| 13 | ssralv 3261 |
. . . . . . . . 9
| |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . . 8
|
| 15 | 14 | ralimi 2570 |
. . . . . . 7
|
| 16 | ssralv 3261 |
. . . . . . 7
| |
| 17 | 12, 15, 16 | mpsyl 65 |
. . . . . 6
|
| 18 | 17 | ad5antr 496 |
. . . . 5
|
| 19 | simpr 110 |
. . . . 5
| |
| 20 | simprl 529 |
. . . . . . 7
| |
| 21 | 20 | ad3antrrr 492 |
. . . . . 6
|
| 22 | simplrr 536 |
. . . . . 6
| |
| 23 | ssdif 3312 |
. . . . . . 7
| |
| 24 | 23 | sseld 3196 |
. . . . . 6
|
| 25 | 21, 22, 24 | sylc 62 |
. . . . 5
|
| 26 | difinfsn 7217 |
. . . . 5
| |
| 27 | 18, 19, 25, 26 | syl3anc 1250 |
. . . 4
|
| 28 | difun1 3437 |
. . . 4
| |
| 29 | 27, 28 | breqtrrdi 4093 |
. . 3
|
| 30 | 29 | ex 115 |
. 2
|
| 31 | simprr 531 |
. 2
| |
| 32 | 2, 4, 6, 8, 11, 30, 31 | findcard2sd 7004 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-1st 6239 df-2nd 6240 df-1o 6515 df-er 6633 df-en 6841 df-dom 6842 df-fin 6843 df-dju 7155 df-inl 7164 df-inr 7165 df-case 7201 |
| This theorem is referenced by: inffinp1 12875 |
| Copyright terms: Public domain | W3C validator |