| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difinfinf | Unicode version | ||
| Description: An infinite set minus a finite subset is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.) |
| Ref | Expression |
|---|---|
| difinfinf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq2 3284 |
. . 3
| |
| 2 | 1 | breq2d 4055 |
. 2
|
| 3 | difeq2 3284 |
. . 3
| |
| 4 | 3 | breq2d 4055 |
. 2
|
| 5 | difeq2 3284 |
. . 3
| |
| 6 | 5 | breq2d 4055 |
. 2
|
| 7 | difeq2 3284 |
. . 3
| |
| 8 | 7 | breq2d 4055 |
. 2
|
| 9 | simplr 528 |
. . 3
| |
| 10 | dif0 3530 |
. . 3
| |
| 11 | 9, 10 | breqtrrdi 4085 |
. 2
|
| 12 | difss 3298 |
. . . . . . 7
| |
| 13 | ssralv 3256 |
. . . . . . . . 9
| |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . . 8
|
| 15 | 14 | ralimi 2568 |
. . . . . . 7
|
| 16 | ssralv 3256 |
. . . . . . 7
| |
| 17 | 12, 15, 16 | mpsyl 65 |
. . . . . 6
|
| 18 | 17 | ad5antr 496 |
. . . . 5
|
| 19 | simpr 110 |
. . . . 5
| |
| 20 | simprl 529 |
. . . . . . 7
| |
| 21 | 20 | ad3antrrr 492 |
. . . . . 6
|
| 22 | simplrr 536 |
. . . . . 6
| |
| 23 | ssdif 3307 |
. . . . . . 7
| |
| 24 | 23 | sseld 3191 |
. . . . . 6
|
| 25 | 21, 22, 24 | sylc 62 |
. . . . 5
|
| 26 | difinfsn 7201 |
. . . . 5
| |
| 27 | 18, 19, 25, 26 | syl3anc 1249 |
. . . 4
|
| 28 | difun1 3432 |
. . . 4
| |
| 29 | 27, 28 | breqtrrdi 4085 |
. . 3
|
| 30 | 29 | ex 115 |
. 2
|
| 31 | simprr 531 |
. 2
| |
| 32 | 2, 4, 6, 8, 11, 30, 31 | findcard2sd 6988 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-1st 6225 df-2nd 6226 df-1o 6501 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-dju 7139 df-inl 7148 df-inr 7149 df-case 7185 |
| This theorem is referenced by: inffinp1 12742 |
| Copyright terms: Public domain | W3C validator |