| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > difinfinf | Unicode version | ||
| Description: An infinite set minus a finite subset is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.) | 
| Ref | Expression | 
|---|---|
| difinfinf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | difeq2 3275 | 
. . 3
 | |
| 2 | 1 | breq2d 4045 | 
. 2
 | 
| 3 | difeq2 3275 | 
. . 3
 | |
| 4 | 3 | breq2d 4045 | 
. 2
 | 
| 5 | difeq2 3275 | 
. . 3
 | |
| 6 | 5 | breq2d 4045 | 
. 2
 | 
| 7 | difeq2 3275 | 
. . 3
 | |
| 8 | 7 | breq2d 4045 | 
. 2
 | 
| 9 | simplr 528 | 
. . 3
 | |
| 10 | dif0 3521 | 
. . 3
 | |
| 11 | 9, 10 | breqtrrdi 4075 | 
. 2
 | 
| 12 | difss 3289 | 
. . . . . . 7
 | |
| 13 | ssralv 3247 | 
. . . . . . . . 9
 | |
| 14 | 12, 13 | ax-mp 5 | 
. . . . . . . 8
 | 
| 15 | 14 | ralimi 2560 | 
. . . . . . 7
 | 
| 16 | ssralv 3247 | 
. . . . . . 7
 | |
| 17 | 12, 15, 16 | mpsyl 65 | 
. . . . . 6
 | 
| 18 | 17 | ad5antr 496 | 
. . . . 5
 | 
| 19 | simpr 110 | 
. . . . 5
 | |
| 20 | simprl 529 | 
. . . . . . 7
 | |
| 21 | 20 | ad3antrrr 492 | 
. . . . . 6
 | 
| 22 | simplrr 536 | 
. . . . . 6
 | |
| 23 | ssdif 3298 | 
. . . . . . 7
 | |
| 24 | 23 | sseld 3182 | 
. . . . . 6
 | 
| 25 | 21, 22, 24 | sylc 62 | 
. . . . 5
 | 
| 26 | difinfsn 7166 | 
. . . . 5
 | |
| 27 | 18, 19, 25, 26 | syl3anc 1249 | 
. . . 4
 | 
| 28 | difun1 3423 | 
. . . 4
 | |
| 29 | 27, 28 | breqtrrdi 4075 | 
. . 3
 | 
| 30 | 29 | ex 115 | 
. 2
 | 
| 31 | simprr 531 | 
. 2
 | |
| 32 | 2, 4, 6, 8, 11, 30, 31 | findcard2sd 6953 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1st 6198 df-2nd 6199 df-1o 6474 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-dju 7104 df-inl 7113 df-inr 7114 df-case 7150 | 
| This theorem is referenced by: inffinp1 12646 | 
| Copyright terms: Public domain | W3C validator |