ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difinfinf Unicode version

Theorem difinfinf 7078
Description: An infinite set minus a finite subset is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
Assertion
Ref Expression
difinfinf  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  om 
~<_  ( A  \  B
) )
Distinct variable group:    x, A, y
Allowed substitution hints:    B( x, y)

Proof of Theorem difinfinf
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 3239 . . 3  |-  ( w  =  (/)  ->  ( A 
\  w )  =  ( A  \  (/) ) )
21breq2d 4001 . 2  |-  ( w  =  (/)  ->  ( om  ~<_  ( A  \  w
)  <->  om  ~<_  ( A  \  (/) ) ) )
3 difeq2 3239 . . 3  |-  ( w  =  u  ->  ( A  \  w )  =  ( A  \  u
) )
43breq2d 4001 . 2  |-  ( w  =  u  ->  ( om 
~<_  ( A  \  w
)  <->  om  ~<_  ( A  \  u ) ) )
5 difeq2 3239 . . 3  |-  ( w  =  ( u  u. 
{ v } )  ->  ( A  \  w )  =  ( A  \  ( u  u.  { v } ) ) )
65breq2d 4001 . 2  |-  ( w  =  ( u  u. 
{ v } )  ->  ( om  ~<_  ( A 
\  w )  <->  om  ~<_  ( A 
\  ( u  u. 
{ v } ) ) ) )
7 difeq2 3239 . . 3  |-  ( w  =  B  ->  ( A  \  w )  =  ( A  \  B
) )
87breq2d 4001 . 2  |-  ( w  =  B  ->  ( om 
~<_  ( A  \  w
)  <->  om  ~<_  ( A  \  B ) ) )
9 simplr 525 . . 3  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  om 
~<_  A )
10 dif0 3485 . . 3  |-  ( A 
\  (/) )  =  A
119, 10breqtrrdi 4031 . 2  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  om 
~<_  ( A  \  (/) ) )
12 difss 3253 . . . . . . 7  |-  ( A 
\  u )  C_  A
13 ssralv 3211 . . . . . . . . 9  |-  ( ( A  \  u ) 
C_  A  ->  ( A. y  e.  A DECID  x  =  y  ->  A. y  e.  ( A  \  u
)DECID  x  =  y ) )
1412, 13ax-mp 5 . . . . . . . 8  |-  ( A. y  e.  A DECID  x  =  y  ->  A. y  e.  ( A  \  u )DECID  x  =  y )
1514ralimi 2533 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  ->  A. x  e.  A  A. y  e.  ( A  \  u )DECID  x  =  y )
16 ssralv 3211 . . . . . . 7  |-  ( ( A  \  u ) 
C_  A  ->  ( A. x  e.  A  A. y  e.  ( A  \  u )DECID  x  =  y  ->  A. x  e.  ( A  \  u
) A. y  e.  ( A  \  u
)DECID  x  =  y ) )
1712, 15, 16mpsyl 65 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  ->  A. x  e.  ( A  \  u ) A. y  e.  ( A  \  u )DECID  x  =  y )
1817ad5antr 493 . . . . 5  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  A. x  e.  ( A  \  u ) A. y  e.  ( A  \  u )DECID  x  =  y )
19 simpr 109 . . . . 5  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  om  ~<_  ( A  \  u ) )
20 simprl 526 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  B  C_  A )
2120ad3antrrr 489 . . . . . 6  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  B  C_  A
)
22 simplrr 531 . . . . . 6  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  v  e.  ( B  \  u ) )
23 ssdif 3262 . . . . . . 7  |-  ( B 
C_  A  ->  ( B  \  u )  C_  ( A  \  u
) )
2423sseld 3146 . . . . . 6  |-  ( B 
C_  A  ->  (
v  e.  ( B 
\  u )  -> 
v  e.  ( A 
\  u ) ) )
2521, 22, 24sylc 62 . . . . 5  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  v  e.  ( A  \  u ) )
26 difinfsn 7077 . . . . 5  |-  ( ( A. x  e.  ( A  \  u ) A. y  e.  ( A  \  u )DECID  x  =  y  /\  om  ~<_  ( A  \  u
)  /\  v  e.  ( A  \  u
) )  ->  om  ~<_  ( ( A  \  u ) 
\  { v } ) )
2718, 19, 25, 26syl3anc 1233 . . . 4  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  om  ~<_  ( ( A  \  u )  \  { v } ) )
28 difun1 3387 . . . 4  |-  ( A 
\  ( u  u. 
{ v } ) )  =  ( ( A  \  u ) 
\  { v } )
2927, 28breqtrrdi 4031 . . 3  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  om  ~<_  ( A  \  ( u  u.  {
v } ) ) )
3029ex 114 . 2  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  ->  ( om  ~<_  ( A 
\  u )  ->  om 
~<_  ( A  \  (
u  u.  { v } ) ) ) )
31 simprr 527 . 2  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  B  e.  Fin )
322, 4, 6, 8, 11, 30, 31findcard2sd 6870 1  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  om 
~<_  ( A  \  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 829    = wceq 1348    e. wcel 2141   A.wral 2448    \ cdif 3118    u. cun 3119    C_ wss 3121   (/)c0 3414   {csn 3583   class class class wbr 3989   omcom 4574    ~<_ cdom 6717   Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-dju 7015  df-inl 7024  df-inr 7025  df-case 7061
This theorem is referenced by:  inffinp1  12384
  Copyright terms: Public domain W3C validator