| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difun2 | GIF version | ||
| Description: Absorption of union by difference. Theorem 36 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| difun2 | ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difundir 3426 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐵)) | |
| 2 | difid 3529 | . . 3 ⊢ (𝐵 ∖ 𝐵) = ∅ | |
| 3 | 2 | uneq2i 3324 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐵)) = ((𝐴 ∖ 𝐵) ∪ ∅) |
| 4 | un0 3494 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ ∅) = (𝐴 ∖ 𝐵) | |
| 5 | 1, 3, 4 | 3eqtri 2230 | 1 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∖ cdif 3163 ∪ cun 3164 ∅c0 3460 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 |
| This theorem is referenced by: uneqdifeqim 3546 difprsn1 3772 orddif 4595 fisseneq 7031 dfn2 9308 |
| Copyright terms: Public domain | W3C validator |