ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difundir GIF version

Theorem difundir 3375
Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difundir ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem difundir
StepHypRef Expression
1 indir 3371 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶)))
2 invdif 3364 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴𝐵) ∖ 𝐶)
3 invdif 3364 . . 3 (𝐴 ∩ (V ∖ 𝐶)) = (𝐴𝐶)
4 invdif 3364 . . 3 (𝐵 ∩ (V ∖ 𝐶)) = (𝐵𝐶)
53, 4uneq12i 3274 . 2 ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴𝐶) ∪ (𝐵𝐶))
61, 2, 53eqtr3i 2194 1 ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:   = wceq 1343  Vcvv 2726  cdif 3113  cun 3114  cin 3115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-in 3122
This theorem is referenced by:  symdif1  3387  difun2  3488  diftpsn3  3714  unfiin  6891  setsfun0  12430  strleund  12483  strleun  12484
  Copyright terms: Public domain W3C validator