Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfdm | Unicode version |
Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfrn.1 |
Ref | Expression |
---|---|
nfdm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dm 4611 | . 2 | |
2 | nfcv 2306 | . . . . 5 | |
3 | nfrn.1 | . . . . 5 | |
4 | nfcv 2306 | . . . . 5 | |
5 | 2, 3, 4 | nfbr 4025 | . . . 4 |
6 | 5 | nfex 1624 | . . 3 |
7 | 6 | nfab 2311 | . 2 |
8 | 1, 7 | nfcxfr 2303 | 1 |
Colors of variables: wff set class |
Syntax hints: wex 1479 cab 2150 wnfc 2293 class class class wbr 3979 cdm 4601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-v 2726 df-un 3118 df-sn 3579 df-pr 3580 df-op 3582 df-br 3980 df-dm 4611 |
This theorem is referenced by: nfrn 4846 dmiin 4847 nffn 5281 ellimc3apf 13227 |
Copyright terms: Public domain | W3C validator |