ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdm Unicode version

Theorem nfdm 4910
Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrn.1  |-  F/_ x A
Assertion
Ref Expression
nfdm  |-  F/_ x dom  A

Proof of Theorem nfdm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dm 4673 . 2  |-  dom  A  =  { y  |  E. z  y A z }
2 nfcv 2339 . . . . 5  |-  F/_ x
y
3 nfrn.1 . . . . 5  |-  F/_ x A
4 nfcv 2339 . . . . 5  |-  F/_ x
z
52, 3, 4nfbr 4079 . . . 4  |-  F/ x  y A z
65nfex 1651 . . 3  |-  F/ x E. z  y A
z
76nfab 2344 . 2  |-  F/_ x { y  |  E. z  y A z }
81, 7nfcxfr 2336 1  |-  F/_ x dom  A
Colors of variables: wff set class
Syntax hints:   E.wex 1506   {cab 2182   F/_wnfc 2326   class class class wbr 4033   dom cdm 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-dm 4673
This theorem is referenced by:  nfrn  4911  dmiin  4912  nffn  5354  ellimc3apf  14896
  Copyright terms: Public domain W3C validator