ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdm Unicode version

Theorem nfdm 4848
Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrn.1  |-  F/_ x A
Assertion
Ref Expression
nfdm  |-  F/_ x dom  A

Proof of Theorem nfdm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dm 4614 . 2  |-  dom  A  =  { y  |  E. z  y A z }
2 nfcv 2308 . . . . 5  |-  F/_ x
y
3 nfrn.1 . . . . 5  |-  F/_ x A
4 nfcv 2308 . . . . 5  |-  F/_ x
z
52, 3, 4nfbr 4028 . . . 4  |-  F/ x  y A z
65nfex 1625 . . 3  |-  F/ x E. z  y A
z
76nfab 2313 . 2  |-  F/_ x { y  |  E. z  y A z }
81, 7nfcxfr 2305 1  |-  F/_ x dom  A
Colors of variables: wff set class
Syntax hints:   E.wex 1480   {cab 2151   F/_wnfc 2295   class class class wbr 3982   dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-dm 4614
This theorem is referenced by:  nfrn  4849  dmiin  4850  nffn  5284  ellimc3apf  13269
  Copyright terms: Public domain W3C validator