ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdm Unicode version

Theorem nfdm 4855
Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrn.1  |-  F/_ x A
Assertion
Ref Expression
nfdm  |-  F/_ x dom  A

Proof of Theorem nfdm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dm 4621 . 2  |-  dom  A  =  { y  |  E. z  y A z }
2 nfcv 2312 . . . . 5  |-  F/_ x
y
3 nfrn.1 . . . . 5  |-  F/_ x A
4 nfcv 2312 . . . . 5  |-  F/_ x
z
52, 3, 4nfbr 4035 . . . 4  |-  F/ x  y A z
65nfex 1630 . . 3  |-  F/ x E. z  y A
z
76nfab 2317 . 2  |-  F/_ x { y  |  E. z  y A z }
81, 7nfcxfr 2309 1  |-  F/_ x dom  A
Colors of variables: wff set class
Syntax hints:   E.wex 1485   {cab 2156   F/_wnfc 2299   class class class wbr 3989   dom cdm 4611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-dm 4621
This theorem is referenced by:  nfrn  4856  dmiin  4857  nffn  5294  ellimc3apf  13423
  Copyright terms: Public domain W3C validator