| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmss | Unicode version | ||
| Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3187 |
. . . 4
| |
| 2 | 1 | eximdv 1903 |
. . 3
|
| 3 | vex 2775 |
. . . 4
| |
| 4 | 3 | eldm2 4877 |
. . 3
|
| 5 | 3 | eldm2 4877 |
. . 3
|
| 6 | 2, 4, 5 | 3imtr4g 205 |
. 2
|
| 7 | 6 | ssrdv 3199 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-dm 4686 |
| This theorem is referenced by: dmeq 4879 dmv 4895 rnss 4909 dmiin 4925 dmxpss2 5116 ssxpbm 5119 ssxp1 5120 cocnvres 5208 relrelss 5210 funssxp 5447 fvun1 5647 fndmdif 5687 fneqeql2 5691 tposss 6334 smores 6380 smores2 6382 tfrlemibfn 6416 tfrlemiubacc 6418 tfr1onlembfn 6432 tfr1onlemubacc 6434 tfr1onlemres 6437 tfrcllembfn 6445 tfrcllemubacc 6447 tfrcllemres 6450 frecuzrdgtcl 10559 frecuzrdgdomlem 10564 hashdmprop2dom 10991 ennnfonelemex 12818 strleund 12968 strleun 12969 imasaddfnlemg 13179 dvbssntrcntop 15189 |
| Copyright terms: Public domain | W3C validator |