ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmss Unicode version

Theorem dmss 4878
Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
dmss  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )

Proof of Theorem dmss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3187 . . . 4  |-  ( A 
C_  B  ->  ( <. x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
) )
21eximdv 1903 . . 3  |-  ( A 
C_  B  ->  ( E. y <. x ,  y
>.  e.  A  ->  E. y <. x ,  y >.  e.  B ) )
3 vex 2775 . . . 4  |-  x  e. 
_V
43eldm2 4877 . . 3  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
53eldm2 4877 . . 3  |-  ( x  e.  dom  B  <->  E. y <. x ,  y >.  e.  B )
62, 4, 53imtr4g 205 . 2  |-  ( A 
C_  B  ->  (
x  e.  dom  A  ->  x  e.  dom  B
) )
76ssrdv 3199 1  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1515    e. wcel 2176    C_ wss 3166   <.cop 3636   dom cdm 4676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-dm 4686
This theorem is referenced by:  dmeq  4879  dmv  4895  rnss  4909  dmiin  4925  dmxpss2  5116  ssxpbm  5119  ssxp1  5120  cocnvres  5208  relrelss  5210  funssxp  5447  fvun1  5647  fndmdif  5687  fneqeql2  5691  tposss  6334  smores  6380  smores2  6382  tfrlemibfn  6416  tfrlemiubacc  6418  tfr1onlembfn  6432  tfr1onlemubacc  6434  tfr1onlemres  6437  tfrcllembfn  6445  tfrcllemubacc  6447  tfrcllemres  6450  frecuzrdgtcl  10559  frecuzrdgdomlem  10564  hashdmprop2dom  10991  ennnfonelemex  12818  strleund  12968  strleun  12969  imasaddfnlemg  13179  dvbssntrcntop  15189
  Copyright terms: Public domain W3C validator