ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmss Unicode version

Theorem dmss 4827
Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
dmss  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )

Proof of Theorem dmss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3150 . . . 4  |-  ( A 
C_  B  ->  ( <. x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
) )
21eximdv 1880 . . 3  |-  ( A 
C_  B  ->  ( E. y <. x ,  y
>.  e.  A  ->  E. y <. x ,  y >.  e.  B ) )
3 vex 2741 . . . 4  |-  x  e. 
_V
43eldm2 4826 . . 3  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
53eldm2 4826 . . 3  |-  ( x  e.  dom  B  <->  E. y <. x ,  y >.  e.  B )
62, 4, 53imtr4g 205 . 2  |-  ( A 
C_  B  ->  (
x  e.  dom  A  ->  x  e.  dom  B
) )
76ssrdv 3162 1  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1492    e. wcel 2148    C_ wss 3130   <.cop 3596   dom cdm 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-dm 4637
This theorem is referenced by:  dmeq  4828  dmv  4844  rnss  4858  dmiin  4874  dmxpss2  5062  ssxpbm  5065  ssxp1  5066  cocnvres  5154  relrelss  5156  funssxp  5386  fvun1  5583  fndmdif  5622  fneqeql2  5626  tposss  6247  smores  6293  smores2  6295  tfrlemibfn  6329  tfrlemiubacc  6331  tfr1onlembfn  6345  tfr1onlemubacc  6347  tfr1onlemres  6350  tfrcllembfn  6358  tfrcllemubacc  6360  tfrcllemres  6363  frecuzrdgtcl  10412  frecuzrdgdomlem  10417  ennnfonelemex  12415  strleund  12562  strleun  12563  imasaddfnlemg  12735  dvbssntrcntop  14156
  Copyright terms: Public domain W3C validator