| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmss | Unicode version | ||
| Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3195 |
. . . 4
| |
| 2 | 1 | eximdv 1904 |
. . 3
|
| 3 | vex 2779 |
. . . 4
| |
| 4 | 3 | eldm2 4895 |
. . 3
|
| 5 | 3 | eldm2 4895 |
. . 3
|
| 6 | 2, 4, 5 | 3imtr4g 205 |
. 2
|
| 7 | 6 | ssrdv 3207 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-dm 4703 |
| This theorem is referenced by: dmeq 4897 dmv 4913 rnss 4927 dmiin 4943 dmxpss2 5134 ssxpbm 5137 ssxp1 5138 cocnvres 5226 relrelss 5228 funssxp 5465 fvun1 5668 fndmdif 5708 fneqeql2 5712 tposss 6355 smores 6401 smores2 6403 tfrlemibfn 6437 tfrlemiubacc 6439 tfr1onlembfn 6453 tfr1onlemubacc 6455 tfr1onlemres 6458 tfrcllembfn 6466 tfrcllemubacc 6468 tfrcllemres 6471 frecuzrdgtcl 10594 frecuzrdgdomlem 10599 hashdmprop2dom 11026 ennnfonelemex 12900 strleund 13050 strleun 13051 imasaddfnlemg 13261 dvbssntrcntop 15271 |
| Copyright terms: Public domain | W3C validator |