ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmss Unicode version

Theorem dmss 4877
Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
dmss  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )

Proof of Theorem dmss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3187 . . . 4  |-  ( A 
C_  B  ->  ( <. x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
) )
21eximdv 1903 . . 3  |-  ( A 
C_  B  ->  ( E. y <. x ,  y
>.  e.  A  ->  E. y <. x ,  y >.  e.  B ) )
3 vex 2775 . . . 4  |-  x  e. 
_V
43eldm2 4876 . . 3  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
53eldm2 4876 . . 3  |-  ( x  e.  dom  B  <->  E. y <. x ,  y >.  e.  B )
62, 4, 53imtr4g 205 . 2  |-  ( A 
C_  B  ->  (
x  e.  dom  A  ->  x  e.  dom  B
) )
76ssrdv 3199 1  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1515    e. wcel 2176    C_ wss 3166   <.cop 3636   dom cdm 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-dm 4685
This theorem is referenced by:  dmeq  4878  dmv  4894  rnss  4908  dmiin  4924  dmxpss2  5115  ssxpbm  5118  ssxp1  5119  cocnvres  5207  relrelss  5209  funssxp  5445  fvun1  5645  fndmdif  5685  fneqeql2  5689  tposss  6332  smores  6378  smores2  6380  tfrlemibfn  6414  tfrlemiubacc  6416  tfr1onlembfn  6430  tfr1onlemubacc  6432  tfr1onlemres  6435  tfrcllembfn  6443  tfrcllemubacc  6445  tfrcllemres  6448  frecuzrdgtcl  10557  frecuzrdgdomlem  10562  hashdmprop2dom  10989  ennnfonelemex  12785  strleund  12935  strleun  12936  imasaddfnlemg  13146  dvbssntrcntop  15156
  Copyright terms: Public domain W3C validator