| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmss | Unicode version | ||
| Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3187 |
. . . 4
| |
| 2 | 1 | eximdv 1903 |
. . 3
|
| 3 | vex 2775 |
. . . 4
| |
| 4 | 3 | eldm2 4876 |
. . 3
|
| 5 | 3 | eldm2 4876 |
. . 3
|
| 6 | 2, 4, 5 | 3imtr4g 205 |
. 2
|
| 7 | 6 | ssrdv 3199 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-dm 4685 |
| This theorem is referenced by: dmeq 4878 dmv 4894 rnss 4908 dmiin 4924 dmxpss2 5115 ssxpbm 5118 ssxp1 5119 cocnvres 5207 relrelss 5209 funssxp 5445 fvun1 5645 fndmdif 5685 fneqeql2 5689 tposss 6332 smores 6378 smores2 6380 tfrlemibfn 6414 tfrlemiubacc 6416 tfr1onlembfn 6430 tfr1onlemubacc 6432 tfr1onlemres 6435 tfrcllembfn 6443 tfrcllemubacc 6445 tfrcllemres 6448 frecuzrdgtcl 10557 frecuzrdgdomlem 10562 hashdmprop2dom 10989 ennnfonelemex 12785 strleund 12935 strleun 12936 imasaddfnlemg 13146 dvbssntrcntop 15156 |
| Copyright terms: Public domain | W3C validator |