ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmss Unicode version

Theorem dmss 4866
Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
dmss  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )

Proof of Theorem dmss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3178 . . . 4  |-  ( A 
C_  B  ->  ( <. x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
) )
21eximdv 1894 . . 3  |-  ( A 
C_  B  ->  ( E. y <. x ,  y
>.  e.  A  ->  E. y <. x ,  y >.  e.  B ) )
3 vex 2766 . . . 4  |-  x  e. 
_V
43eldm2 4865 . . 3  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
53eldm2 4865 . . 3  |-  ( x  e.  dom  B  <->  E. y <. x ,  y >.  e.  B )
62, 4, 53imtr4g 205 . 2  |-  ( A 
C_  B  ->  (
x  e.  dom  A  ->  x  e.  dom  B
) )
76ssrdv 3190 1  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1506    e. wcel 2167    C_ wss 3157   <.cop 3626   dom cdm 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-dm 4674
This theorem is referenced by:  dmeq  4867  dmv  4883  rnss  4897  dmiin  4913  dmxpss2  5103  ssxpbm  5106  ssxp1  5107  cocnvres  5195  relrelss  5197  funssxp  5430  fvun1  5630  fndmdif  5670  fneqeql2  5674  tposss  6313  smores  6359  smores2  6361  tfrlemibfn  6395  tfrlemiubacc  6397  tfr1onlembfn  6411  tfr1onlemubacc  6413  tfr1onlemres  6416  tfrcllembfn  6424  tfrcllemubacc  6426  tfrcllemres  6429  frecuzrdgtcl  10521  frecuzrdgdomlem  10526  ennnfonelemex  12656  strleund  12806  strleun  12807  imasaddfnlemg  13016  dvbssntrcntop  15004
  Copyright terms: Public domain W3C validator