ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmss Unicode version

Theorem dmss 4803
Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
dmss  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )

Proof of Theorem dmss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3136 . . . 4  |-  ( A 
C_  B  ->  ( <. x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
) )
21eximdv 1868 . . 3  |-  ( A 
C_  B  ->  ( E. y <. x ,  y
>.  e.  A  ->  E. y <. x ,  y >.  e.  B ) )
3 vex 2729 . . . 4  |-  x  e. 
_V
43eldm2 4802 . . 3  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
53eldm2 4802 . . 3  |-  ( x  e.  dom  B  <->  E. y <. x ,  y >.  e.  B )
62, 4, 53imtr4g 204 . 2  |-  ( A 
C_  B  ->  (
x  e.  dom  A  ->  x  e.  dom  B
) )
76ssrdv 3148 1  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1480    e. wcel 2136    C_ wss 3116   <.cop 3579   dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-dm 4614
This theorem is referenced by:  dmeq  4804  dmv  4820  rnss  4834  dmiin  4850  dmxpss2  5036  ssxpbm  5039  ssxp1  5040  cocnvres  5128  relrelss  5130  funssxp  5357  fvun1  5552  fndmdif  5590  fneqeql2  5594  tposss  6214  smores  6260  smores2  6262  tfrlemibfn  6296  tfrlemiubacc  6298  tfr1onlembfn  6312  tfr1onlemubacc  6314  tfr1onlemres  6317  tfrcllembfn  6325  tfrcllemubacc  6327  tfrcllemres  6330  frecuzrdgtcl  10347  frecuzrdgdomlem  10352  ennnfonelemex  12347  strleund  12483  strleun  12484  dvbssntrcntop  13293
  Copyright terms: Public domain W3C validator