ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmss Unicode version

Theorem dmss 4896
Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
dmss  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )

Proof of Theorem dmss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3195 . . . 4  |-  ( A 
C_  B  ->  ( <. x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
) )
21eximdv 1904 . . 3  |-  ( A 
C_  B  ->  ( E. y <. x ,  y
>.  e.  A  ->  E. y <. x ,  y >.  e.  B ) )
3 vex 2779 . . . 4  |-  x  e. 
_V
43eldm2 4895 . . 3  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
53eldm2 4895 . . 3  |-  ( x  e.  dom  B  <->  E. y <. x ,  y >.  e.  B )
62, 4, 53imtr4g 205 . 2  |-  ( A 
C_  B  ->  (
x  e.  dom  A  ->  x  e.  dom  B
) )
76ssrdv 3207 1  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1516    e. wcel 2178    C_ wss 3174   <.cop 3646   dom cdm 4693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-dm 4703
This theorem is referenced by:  dmeq  4897  dmv  4913  rnss  4927  dmiin  4943  dmxpss2  5134  ssxpbm  5137  ssxp1  5138  cocnvres  5226  relrelss  5228  funssxp  5465  fvun1  5668  fndmdif  5708  fneqeql2  5712  tposss  6355  smores  6401  smores2  6403  tfrlemibfn  6437  tfrlemiubacc  6439  tfr1onlembfn  6453  tfr1onlemubacc  6455  tfr1onlemres  6458  tfrcllembfn  6466  tfrcllemubacc  6468  tfrcllemres  6471  frecuzrdgtcl  10594  frecuzrdgdomlem  10599  hashdmprop2dom  11026  ennnfonelemex  12900  strleund  13050  strleun  13051  imasaddfnlemg  13261  dvbssntrcntop  15271
  Copyright terms: Public domain W3C validator