ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmss Unicode version

Theorem dmss 4922
Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
dmss  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )

Proof of Theorem dmss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3218 . . . 4  |-  ( A 
C_  B  ->  ( <. x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
) )
21eximdv 1926 . . 3  |-  ( A 
C_  B  ->  ( E. y <. x ,  y
>.  e.  A  ->  E. y <. x ,  y >.  e.  B ) )
3 vex 2802 . . . 4  |-  x  e. 
_V
43eldm2 4921 . . 3  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
53eldm2 4921 . . 3  |-  ( x  e.  dom  B  <->  E. y <. x ,  y >.  e.  B )
62, 4, 53imtr4g 205 . 2  |-  ( A 
C_  B  ->  (
x  e.  dom  A  ->  x  e.  dom  B
) )
76ssrdv 3230 1  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1538    e. wcel 2200    C_ wss 3197   <.cop 3669   dom cdm 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-dm 4729
This theorem is referenced by:  dmeq  4923  dmv  4939  rnss  4954  dmiin  4970  dmxpss2  5161  ssxpbm  5164  ssxp1  5165  cocnvres  5253  relrelss  5255  funssxp  5493  fvun1  5700  fndmdif  5740  fneqeql2  5744  tposss  6392  smores  6438  smores2  6440  tfrlemibfn  6474  tfrlemiubacc  6476  tfr1onlembfn  6490  tfr1onlemubacc  6492  tfr1onlemres  6495  tfrcllembfn  6503  tfrcllemubacc  6505  tfrcllemres  6508  frecuzrdgtcl  10634  frecuzrdgdomlem  10639  hashdmprop2dom  11066  ennnfonelemex  12985  strleund  13136  strleun  13137  imasaddfnlemg  13347  dvbssntrcntop  15358
  Copyright terms: Public domain W3C validator