Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rnopab | Unicode version |
Description: The range of a class of ordered pairs. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
rnopab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfopab1 4067 | . . 3 | |
2 | nfopab2 4068 | . . 3 | |
3 | 1, 2 | dfrnf 4861 | . 2 |
4 | df-br 3999 | . . . . 5 | |
5 | opabid 4251 | . . . . 5 | |
6 | 4, 5 | bitri 184 | . . . 4 |
7 | 6 | exbii 1603 | . . 3 |
8 | 7 | abbii 2291 | . 2 |
9 | 3, 8 | eqtri 2196 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1353 wex 1490 wcel 2146 cab 2161 cop 3592 class class class wbr 3998 copab 4058 crn 4621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-cnv 4628 df-dm 4630 df-rn 4631 |
This theorem is referenced by: rnmpt 4868 mptpreima 5114 rnoprab 5948 |
Copyright terms: Public domain | W3C validator |