ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrn Unicode version

Theorem nfrn 4942
Description: Bound-variable hypothesis builder for range. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrn.1  |-  F/_ x A
Assertion
Ref Expression
nfrn  |-  F/_ x ran  A

Proof of Theorem nfrn
StepHypRef Expression
1 df-rn 4704 . 2  |-  ran  A  =  dom  `' A
2 nfrn.1 . . . 4  |-  F/_ x A
32nfcnv 4875 . . 3  |-  F/_ x `' A
43nfdm 4941 . 2  |-  F/_ x dom  `' A
51, 4nfcxfr 2347 1  |-  F/_ x ran  A
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2337   `'ccnv 4692   dom cdm 4693   ran crn 4694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-cnv 4701  df-dm 4703  df-rn 4704
This theorem is referenced by:  nfima  5049  nff  5442  nffo  5519  fliftfun  5888  nfseq  10639
  Copyright terms: Public domain W3C validator