ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrn Unicode version

Theorem nfrn 4854
Description: Bound-variable hypothesis builder for range. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrn.1  |-  F/_ x A
Assertion
Ref Expression
nfrn  |-  F/_ x ran  A

Proof of Theorem nfrn
StepHypRef Expression
1 df-rn 4620 . 2  |-  ran  A  =  dom  `' A
2 nfrn.1 . . . 4  |-  F/_ x A
32nfcnv 4788 . . 3  |-  F/_ x `' A
43nfdm 4853 . 2  |-  F/_ x dom  `' A
51, 4nfcxfr 2309 1  |-  F/_ x ran  A
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2299   `'ccnv 4608   dom cdm 4609   ran crn 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-cnv 4617  df-dm 4619  df-rn 4620
This theorem is referenced by:  nfima  4959  nff  5342  nffo  5417  fliftfun  5772  nfseq  10398
  Copyright terms: Public domain W3C validator