| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusval | Unicode version | ||
| Description: Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| qusval.u |
|
| qusval.v |
|
| qusval.f |
|
| qusval.e |
|
| qusval.r |
|
| Ref | Expression |
|---|---|
| qusval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusval.u |
. 2
| |
| 2 | df-qus 13220 |
. . . 4
| |
| 3 | 2 | a1i 9 |
. . 3
|
| 4 | simprl 529 |
. . . . . . . 8
| |
| 5 | 4 | fveq2d 5598 |
. . . . . . 7
|
| 6 | qusval.v |
. . . . . . . 8
| |
| 7 | 6 | adantr 276 |
. . . . . . 7
|
| 8 | 5, 7 | eqtr4d 2242 |
. . . . . 6
|
| 9 | eceq2 6675 |
. . . . . . 7
| |
| 10 | 9 | ad2antll 491 |
. . . . . 6
|
| 11 | 8, 10 | mpteq12dv 4137 |
. . . . 5
|
| 12 | qusval.f |
. . . . 5
| |
| 13 | 11, 12 | eqtr4di 2257 |
. . . 4
|
| 14 | 13, 4 | oveq12d 5980 |
. . 3
|
| 15 | qusval.r |
. . . 4
| |
| 16 | 15 | elexd 2787 |
. . 3
|
| 17 | qusval.e |
. . . 4
| |
| 18 | 17 | elexd 2787 |
. . 3
|
| 19 | basfn 12975 |
. . . . . . . 8
| |
| 20 | funfvex 5611 |
. . . . . . . . 9
| |
| 21 | 20 | funfni 5390 |
. . . . . . . 8
|
| 22 | 19, 16, 21 | sylancr 414 |
. . . . . . 7
|
| 23 | 6, 22 | eqeltrd 2283 |
. . . . . 6
|
| 24 | 23 | mptexd 5829 |
. . . . 5
|
| 25 | 12, 24 | eqeltrid 2293 |
. . . 4
|
| 26 | imasex 13222 |
. . . 4
| |
| 27 | 25, 15, 26 | syl2anc 411 |
. . 3
|
| 28 | 3, 14, 16, 18, 27 | ovmpod 6091 |
. 2
|
| 29 | 1, 28 | eqtrd 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1re 8049 ax-addrcl 8052 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-tp 3646 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-ec 6640 df-inn 9067 df-2 9125 df-3 9126 df-ndx 12920 df-slot 12921 df-base 12923 df-plusg 13007 df-mulr 13008 df-iimas 13219 df-qus 13220 |
| This theorem is referenced by: qusin 13243 qusbas 13244 qusaddval 13252 qusaddf 13253 qusmulval 13254 qusmulf 13255 qusgrp2 13534 qusrng 13805 qusring2 13913 |
| Copyright terms: Public domain | W3C validator |