ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusval Unicode version

Theorem qusval 12966
Description: Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusval.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusval.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusval.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
qusval.e  |-  ( ph  ->  .~  e.  W )
qusval.r  |-  ( ph  ->  R  e.  Z )
Assertion
Ref Expression
qusval  |-  ( ph  ->  U  =  ( F 
"s  R ) )
Distinct variable groups:    x,  .~    ph, x    x, R    x, V
Allowed substitution hints:    U( x)    F( x)    W( x)    Z( x)

Proof of Theorem qusval
Dummy variables  e  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusval.u . 2  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 df-qus 12946 . . . 4  |-  /.s  =  (
r  e.  _V , 
e  e.  _V  |->  ( ( x  e.  (
Base `  r )  |->  [ x ] e )  "s  r ) )
32a1i 9 . . 3  |-  ( ph  ->  /.s  =  ( r  e. 
_V ,  e  e. 
_V  |->  ( ( x  e.  ( Base `  r
)  |->  [ x ]
e )  "s  r )
) )
4 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  -> 
r  =  R )
54fveq2d 5562 . . . . . . 7  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  -> 
( Base `  r )  =  ( Base `  R
) )
6 qusval.v . . . . . . . 8  |-  ( ph  ->  V  =  ( Base `  R ) )
76adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  ->  V  =  ( Base `  R ) )
85, 7eqtr4d 2232 . . . . . 6  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  -> 
( Base `  r )  =  V )
9 eceq2 6629 . . . . . . 7  |-  ( e  =  .~  ->  [ x ] e  =  [
x ]  .~  )
109ad2antll 491 . . . . . 6  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  ->  [ x ] e  =  [ x ]  .~  )
118, 10mpteq12dv 4115 . . . . 5  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  -> 
( x  e.  (
Base `  r )  |->  [ x ] e )  =  ( x  e.  V  |->  [ x ]  .~  ) )
12 qusval.f . . . . 5  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
1311, 12eqtr4di 2247 . . . 4  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  -> 
( x  e.  (
Base `  r )  |->  [ x ] e )  =  F )
1413, 4oveq12d 5940 . . 3  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  -> 
( ( x  e.  ( Base `  r
)  |->  [ x ]
e )  "s  r )  =  ( F  "s  R
) )
15 qusval.r . . . 4  |-  ( ph  ->  R  e.  Z )
1615elexd 2776 . . 3  |-  ( ph  ->  R  e.  _V )
17 qusval.e . . . 4  |-  ( ph  ->  .~  e.  W )
1817elexd 2776 . . 3  |-  ( ph  ->  .~  e.  _V )
19 basfn 12736 . . . . . . . 8  |-  Base  Fn  _V
20 funfvex 5575 . . . . . . . . 9  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2120funfni 5358 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2219, 16, 21sylancr 414 . . . . . . 7  |-  ( ph  ->  ( Base `  R
)  e.  _V )
236, 22eqeltrd 2273 . . . . . 6  |-  ( ph  ->  V  e.  _V )
2423mptexd 5789 . . . . 5  |-  ( ph  ->  ( x  e.  V  |->  [ x ]  .~  )  e.  _V )
2512, 24eqeltrid 2283 . . . 4  |-  ( ph  ->  F  e.  _V )
26 imasex 12948 . . . 4  |-  ( ( F  e.  _V  /\  R  e.  Z )  ->  ( F  "s  R )  e.  _V )
2725, 15, 26syl2anc 411 . . 3  |-  ( ph  ->  ( F  "s  R )  e.  _V )
283, 14, 16, 18, 27ovmpod 6050 . 2  |-  ( ph  ->  ( R  /.s  .~  )  =  ( F  "s  R
) )
291, 28eqtrd 2229 1  |-  ( ph  ->  U  =  ( F 
"s  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    |-> cmpt 4094    Fn wfn 5253   ` cfv 5258  (class class class)co 5922    e. cmpo 5924   [cec 6590   Basecbs 12678    "s cimas 12942    /.s cqus 12943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-ec 6594  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mulr 12769  df-iimas 12945  df-qus 12946
This theorem is referenced by:  qusin  12969  qusbas  12970  qusaddval  12978  qusaddf  12979  qusmulval  12980  qusmulf  12981  qusgrp2  13243  qusrng  13514  qusring2  13622
  Copyright terms: Public domain W3C validator