ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusval Unicode version

Theorem qusval 12762
Description: Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusval.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusval.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusval.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
qusval.e  |-  ( ph  ->  .~  e.  W )
qusval.r  |-  ( ph  ->  R  e.  Z )
Assertion
Ref Expression
qusval  |-  ( ph  ->  U  =  ( F 
"s  R ) )
Distinct variable groups:    x,  .~    ph, x    x, R    x, V
Allowed substitution hints:    U( x)    F( x)    W( x)    Z( x)

Proof of Theorem qusval
Dummy variables  e  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusval.u . 2  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 df-qus 12742 . . . 4  |-  /.s  =  (
r  e.  _V , 
e  e.  _V  |->  ( ( x  e.  (
Base `  r )  |->  [ x ] e )  "s  r ) )
32a1i 9 . . 3  |-  ( ph  ->  /.s  =  ( r  e. 
_V ,  e  e. 
_V  |->  ( ( x  e.  ( Base `  r
)  |->  [ x ]
e )  "s  r )
) )
4 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  -> 
r  =  R )
54fveq2d 5531 . . . . . . 7  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  -> 
( Base `  r )  =  ( Base `  R
) )
6 qusval.v . . . . . . . 8  |-  ( ph  ->  V  =  ( Base `  R ) )
76adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  ->  V  =  ( Base `  R ) )
85, 7eqtr4d 2223 . . . . . 6  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  -> 
( Base `  r )  =  V )
9 eceq2 6586 . . . . . . 7  |-  ( e  =  .~  ->  [ x ] e  =  [
x ]  .~  )
109ad2antll 491 . . . . . 6  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  ->  [ x ] e  =  [ x ]  .~  )
118, 10mpteq12dv 4097 . . . . 5  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  -> 
( x  e.  (
Base `  r )  |->  [ x ] e )  =  ( x  e.  V  |->  [ x ]  .~  ) )
12 qusval.f . . . . 5  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
1311, 12eqtr4di 2238 . . . 4  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  -> 
( x  e.  (
Base `  r )  |->  [ x ] e )  =  F )
1413, 4oveq12d 5906 . . 3  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  -> 
( ( x  e.  ( Base `  r
)  |->  [ x ]
e )  "s  r )  =  ( F  "s  R
) )
15 qusval.r . . . 4  |-  ( ph  ->  R  e.  Z )
1615elexd 2762 . . 3  |-  ( ph  ->  R  e.  _V )
17 qusval.e . . . 4  |-  ( ph  ->  .~  e.  W )
1817elexd 2762 . . 3  |-  ( ph  ->  .~  e.  _V )
19 basfn 12534 . . . . . . . 8  |-  Base  Fn  _V
20 funfvex 5544 . . . . . . . . 9  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2120funfni 5328 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2219, 16, 21sylancr 414 . . . . . . 7  |-  ( ph  ->  ( Base `  R
)  e.  _V )
236, 22eqeltrd 2264 . . . . . 6  |-  ( ph  ->  V  e.  _V )
2423mptexd 5756 . . . . 5  |-  ( ph  ->  ( x  e.  V  |->  [ x ]  .~  )  e.  _V )
2512, 24eqeltrid 2274 . . . 4  |-  ( ph  ->  F  e.  _V )
26 imasex 12744 . . . 4  |-  ( ( F  e.  _V  /\  R  e.  Z )  ->  ( F  "s  R )  e.  _V )
2725, 15, 26syl2anc 411 . . 3  |-  ( ph  ->  ( F  "s  R )  e.  _V )
283, 14, 16, 18, 27ovmpod 6016 . 2  |-  ( ph  ->  ( R  /.s  .~  )  =  ( F  "s  R
) )
291, 28eqtrd 2220 1  |-  ( ph  ->  U  =  ( F 
"s  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   _Vcvv 2749    |-> cmpt 4076    Fn wfn 5223   ` cfv 5228  (class class class)co 5888    e. cmpo 5890   [cec 6547   Basecbs 12476    "s cimas 12738    /.s cqus 12739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1re 7919  ax-addrcl 7922
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-tp 3612  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-ec 6551  df-inn 8934  df-2 8992  df-3 8993  df-ndx 12479  df-slot 12480  df-base 12482  df-plusg 12564  df-mulr 12565  df-iimas 12741  df-qus 12742
This theorem is referenced by:  qusin  12765  qusbas  12766  qusaddval  12773  qusaddf  12774  qusmulval  12775  qusmulf  12776  qusgrp2  13008  qusrng  13210  qusring2  13314
  Copyright terms: Public domain W3C validator