ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusval Unicode version

Theorem qusval 12909
Description: Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusval.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusval.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusval.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
qusval.e  |-  ( ph  ->  .~  e.  W )
qusval.r  |-  ( ph  ->  R  e.  Z )
Assertion
Ref Expression
qusval  |-  ( ph  ->  U  =  ( F 
"s  R ) )
Distinct variable groups:    x,  .~    ph, x    x, R    x, V
Allowed substitution hints:    U( x)    F( x)    W( x)    Z( x)

Proof of Theorem qusval
Dummy variables  e  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusval.u . 2  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 df-qus 12889 . . . 4  |-  /.s  =  (
r  e.  _V , 
e  e.  _V  |->  ( ( x  e.  (
Base `  r )  |->  [ x ] e )  "s  r ) )
32a1i 9 . . 3  |-  ( ph  ->  /.s  =  ( r  e. 
_V ,  e  e. 
_V  |->  ( ( x  e.  ( Base `  r
)  |->  [ x ]
e )  "s  r )
) )
4 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  -> 
r  =  R )
54fveq2d 5559 . . . . . . 7  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  -> 
( Base `  r )  =  ( Base `  R
) )
6 qusval.v . . . . . . . 8  |-  ( ph  ->  V  =  ( Base `  R ) )
76adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  ->  V  =  ( Base `  R ) )
85, 7eqtr4d 2229 . . . . . 6  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  -> 
( Base `  r )  =  V )
9 eceq2 6626 . . . . . . 7  |-  ( e  =  .~  ->  [ x ] e  =  [
x ]  .~  )
109ad2antll 491 . . . . . 6  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  ->  [ x ] e  =  [ x ]  .~  )
118, 10mpteq12dv 4112 . . . . 5  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  -> 
( x  e.  (
Base `  r )  |->  [ x ] e )  =  ( x  e.  V  |->  [ x ]  .~  ) )
12 qusval.f . . . . 5  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
1311, 12eqtr4di 2244 . . . 4  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  -> 
( x  e.  (
Base `  r )  |->  [ x ] e )  =  F )
1413, 4oveq12d 5937 . . 3  |-  ( (
ph  /\  ( r  =  R  /\  e  =  .~  ) )  -> 
( ( x  e.  ( Base `  r
)  |->  [ x ]
e )  "s  r )  =  ( F  "s  R
) )
15 qusval.r . . . 4  |-  ( ph  ->  R  e.  Z )
1615elexd 2773 . . 3  |-  ( ph  ->  R  e.  _V )
17 qusval.e . . . 4  |-  ( ph  ->  .~  e.  W )
1817elexd 2773 . . 3  |-  ( ph  ->  .~  e.  _V )
19 basfn 12679 . . . . . . . 8  |-  Base  Fn  _V
20 funfvex 5572 . . . . . . . . 9  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2120funfni 5355 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2219, 16, 21sylancr 414 . . . . . . 7  |-  ( ph  ->  ( Base `  R
)  e.  _V )
236, 22eqeltrd 2270 . . . . . 6  |-  ( ph  ->  V  e.  _V )
2423mptexd 5786 . . . . 5  |-  ( ph  ->  ( x  e.  V  |->  [ x ]  .~  )  e.  _V )
2512, 24eqeltrid 2280 . . . 4  |-  ( ph  ->  F  e.  _V )
26 imasex 12891 . . . 4  |-  ( ( F  e.  _V  /\  R  e.  Z )  ->  ( F  "s  R )  e.  _V )
2725, 15, 26syl2anc 411 . . 3  |-  ( ph  ->  ( F  "s  R )  e.  _V )
283, 14, 16, 18, 27ovmpod 6047 . 2  |-  ( ph  ->  ( R  /.s  .~  )  =  ( F  "s  R
) )
291, 28eqtrd 2226 1  |-  ( ph  ->  U  =  ( F 
"s  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    |-> cmpt 4091    Fn wfn 5250   ` cfv 5255  (class class class)co 5919    e. cmpo 5921   [cec 6587   Basecbs 12621    "s cimas 12885    /.s cqus 12886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-ec 6591  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mulr 12712  df-iimas 12888  df-qus 12889
This theorem is referenced by:  qusin  12912  qusbas  12913  qusaddval  12921  qusaddf  12922  qusmulval  12923  qusmulf  12924  qusgrp2  13186  qusrng  13457  qusring2  13565
  Copyright terms: Public domain W3C validator