ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elecg Unicode version

Theorem elecg 6720
Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
elecg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  [ B ] R  <->  B R A ) )

Proof of Theorem elecg
StepHypRef Expression
1 elimasng 5096 . . 3  |-  ( ( B  e.  W  /\  A  e.  V )  ->  ( A  e.  ( R " { B } )  <->  <. B ,  A >.  e.  R ) )
21ancoms 268 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  ( R " { B } )  <->  <. B ,  A >.  e.  R ) )
3 df-ec 6682 . . 3  |-  [ B ] R  =  ( R " { B }
)
43eleq2i 2296 . 2  |-  ( A  e.  [ B ] R 
<->  A  e.  ( R
" { B }
) )
5 df-br 4084 . 2  |-  ( B R A  <->  <. B ,  A >.  e.  R )
62, 4, 53bitr4g 223 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  [ B ] R  <->  B R A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   {csn 3666   <.cop 3669   class class class wbr 4083   "cima 4722   [cec 6678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-ec 6682
This theorem is referenced by:  elec  6721  relelec  6722  ecdmn0m  6724  erth  6726  ecidg  6746  qsel  6759  xmetec  15111  blpnfctr  15113  xmetresbl  15114
  Copyright terms: Public domain W3C validator