ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elecg Unicode version

Theorem elecg 6629
Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
elecg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  [ B ] R  <->  B R A ) )

Proof of Theorem elecg
StepHypRef Expression
1 elimasng 5034 . . 3  |-  ( ( B  e.  W  /\  A  e.  V )  ->  ( A  e.  ( R " { B } )  <->  <. B ,  A >.  e.  R ) )
21ancoms 268 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  ( R " { B } )  <->  <. B ,  A >.  e.  R ) )
3 df-ec 6591 . . 3  |-  [ B ] R  =  ( R " { B }
)
43eleq2i 2260 . 2  |-  ( A  e.  [ B ] R 
<->  A  e.  ( R
" { B }
) )
5 df-br 4031 . 2  |-  ( B R A  <->  <. B ,  A >.  e.  R )
62, 4, 53bitr4g 223 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  [ B ] R  <->  B R A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164   {csn 3619   <.cop 3622   class class class wbr 4030   "cima 4663   [cec 6587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-cnv 4668  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-ec 6591
This theorem is referenced by:  elec  6630  relelec  6631  ecdmn0m  6633  erth  6635  ecidg  6655  qsel  6668  xmetec  14616  blpnfctr  14618  xmetresbl  14619
  Copyright terms: Public domain W3C validator