ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elecg Unicode version

Theorem elecg 6575
Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
elecg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  [ B ] R  <->  B R A ) )

Proof of Theorem elecg
StepHypRef Expression
1 elimasng 4998 . . 3  |-  ( ( B  e.  W  /\  A  e.  V )  ->  ( A  e.  ( R " { B } )  <->  <. B ,  A >.  e.  R ) )
21ancoms 268 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  ( R " { B } )  <->  <. B ,  A >.  e.  R ) )
3 df-ec 6539 . . 3  |-  [ B ] R  =  ( R " { B }
)
43eleq2i 2244 . 2  |-  ( A  e.  [ B ] R 
<->  A  e.  ( R
" { B }
) )
5 df-br 4006 . 2  |-  ( B R A  <->  <. B ,  A >.  e.  R )
62, 4, 53bitr4g 223 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  [ B ] R  <->  B R A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148   {csn 3594   <.cop 3597   class class class wbr 4005   "cima 4631   [cec 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-ec 6539
This theorem is referenced by:  elec  6576  relelec  6577  ecdmn0m  6579  erth  6581  ecidg  6601  qsel  6614  xmetec  14022  blpnfctr  14024  xmetresbl  14025
  Copyright terms: Public domain W3C validator