ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq1 Unicode version

Theorem imaeq1 5005
Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
imaeq1  |-  ( A  =  B  ->  ( A " C )  =  ( B " C
) )

Proof of Theorem imaeq1
StepHypRef Expression
1 reseq1 4941 . . 3  |-  ( A  =  B  ->  ( A  |`  C )  =  ( B  |`  C ) )
21rneqd 4896 . 2  |-  ( A  =  B  ->  ran  ( A  |`  C )  =  ran  ( B  |`  C ) )
3 df-ima 4677 . 2  |-  ( A
" C )  =  ran  ( A  |`  C )
4 df-ima 4677 . 2  |-  ( B
" C )  =  ran  ( B  |`  C )
52, 3, 43eqtr4g 2254 1  |-  ( A  =  B  ->  ( A " C )  =  ( B " C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   ran crn 4665    |` cres 4666   "cima 4667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677
This theorem is referenced by:  imaeq1i  5007  imaeq1d  5009  eceq2  6638  iscnp  14519  elply2  15055
  Copyright terms: Public domain W3C validator