| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eceq2 | GIF version | ||
| Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| eceq2 | ⊢ (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1 5005 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 “ {𝐶}) = (𝐵 “ {𝐶})) | |
| 2 | df-ec 6603 | . 2 ⊢ [𝐶]𝐴 = (𝐴 “ {𝐶}) | |
| 3 | df-ec 6603 | . 2 ⊢ [𝐶]𝐵 = (𝐵 “ {𝐶}) | |
| 4 | 1, 2, 3 | 3eqtr4g 2254 | 1 ⊢ (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 {csn 3623 “ cima 4667 [cec 6599 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-ec 6603 |
| This theorem is referenced by: eceq2i 6639 eceq2d 6640 qseq2 6652 nqnq0pi 7522 qusval 13025 qusex 13027 znzrh2 14278 |
| Copyright terms: Public domain | W3C validator |