ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eceq2 GIF version

Theorem eceq2 6624
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq2 (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵)

Proof of Theorem eceq2
StepHypRef Expression
1 imaeq1 5000 . 2 (𝐴 = 𝐵 → (𝐴 “ {𝐶}) = (𝐵 “ {𝐶}))
2 df-ec 6589 . 2 [𝐶]𝐴 = (𝐴 “ {𝐶})
3 df-ec 6589 . 2 [𝐶]𝐵 = (𝐵 “ {𝐶})
41, 2, 33eqtr4g 2251 1 (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  {csn 3618  cima 4662  [cec 6585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-ec 6589
This theorem is referenced by:  eceq2i  6625  eceq2d  6626  qseq2  6638  nqnq0pi  7498  qusval  12906  qusex  12908  znzrh2  14134
  Copyright terms: Public domain W3C validator