ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eceq2 GIF version

Theorem eceq2 6669
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq2 (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵)

Proof of Theorem eceq2
StepHypRef Expression
1 imaeq1 5025 . 2 (𝐴 = 𝐵 → (𝐴 “ {𝐶}) = (𝐵 “ {𝐶}))
2 df-ec 6634 . 2 [𝐶]𝐴 = (𝐴 “ {𝐶})
3 df-ec 6634 . 2 [𝐶]𝐵 = (𝐵 “ {𝐶})
41, 2, 33eqtr4g 2264 1 (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  {csn 3637  cima 4685  [cec 6630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3643  df-pr 3644  df-op 3646  df-br 4051  df-opab 4113  df-cnv 4690  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-ec 6634
This theorem is referenced by:  eceq2i  6670  eceq2d  6671  qseq2  6683  nqnq0pi  7566  qusval  13225  qusex  13227  znzrh2  14478
  Copyright terms: Public domain W3C validator