| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eceq2 | GIF version | ||
| Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| eceq2 | ⊢ (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1 5062 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 “ {𝐶}) = (𝐵 “ {𝐶})) | |
| 2 | df-ec 6680 | . 2 ⊢ [𝐶]𝐴 = (𝐴 “ {𝐶}) | |
| 3 | df-ec 6680 | . 2 ⊢ [𝐶]𝐵 = (𝐵 “ {𝐶}) | |
| 4 | 1, 2, 3 | 3eqtr4g 2287 | 1 ⊢ (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 {csn 3666 “ cima 4721 [cec 6676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-ec 6680 |
| This theorem is referenced by: eceq2i 6716 eceq2d 6717 qseq2 6729 nqnq0pi 7621 qusval 13351 qusex 13353 znzrh2 14604 |
| Copyright terms: Public domain | W3C validator |