ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eceq2 GIF version

Theorem eceq2 6715
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq2 (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵)

Proof of Theorem eceq2
StepHypRef Expression
1 imaeq1 5062 . 2 (𝐴 = 𝐵 → (𝐴 “ {𝐶}) = (𝐵 “ {𝐶}))
2 df-ec 6680 . 2 [𝐶]𝐴 = (𝐴 “ {𝐶})
3 df-ec 6680 . 2 [𝐶]𝐵 = (𝐵 “ {𝐶})
41, 2, 33eqtr4g 2287 1 (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  {csn 3666  cima 4721  [cec 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-ec 6680
This theorem is referenced by:  eceq2i  6716  eceq2d  6717  qseq2  6729  nqnq0pi  7621  qusval  13351  qusex  13353  znzrh2  14604
  Copyright terms: Public domain W3C validator