ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idref Unicode version

Theorem idref 5803
Description: TODO: This is the same as issref 5052 (which has a much longer proof). Should we replace issref 5052 with this one? - NM 9-May-2016.

Two ways to state a relation is reflexive. (Adapted from Tarski.) (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Proof modification is discouraged.)

Assertion
Ref Expression
idref  |-  ( (  _I  |`  A )  C_  R  <->  A. x  e.  A  x R x )
Distinct variable groups:    x, A    x, R

Proof of Theorem idref
StepHypRef Expression
1 eqid 2196 . . . 4  |-  ( x  e.  A  |->  <. x ,  x >. )  =  ( x  e.  A  |->  <.
x ,  x >. )
21fmpt 5712 . . 3  |-  ( A. x  e.  A  <. x ,  x >.  e.  R  <->  ( x  e.  A  |->  <.
x ,  x >. ) : A --> R )
3 vex 2766 . . . . . 6  |-  x  e. 
_V
43, 3opex 4262 . . . . 5  |-  <. x ,  x >.  e.  _V
54, 1fnmpti 5386 . . . 4  |-  ( x  e.  A  |->  <. x ,  x >. )  Fn  A
6 df-f 5262 . . . 4  |-  ( ( x  e.  A  |->  <.
x ,  x >. ) : A --> R  <->  ( (
x  e.  A  |->  <.
x ,  x >. )  Fn  A  /\  ran  ( x  e.  A  |-> 
<. x ,  x >. ) 
C_  R ) )
75, 6mpbiran 942 . . 3  |-  ( ( x  e.  A  |->  <.
x ,  x >. ) : A --> R  <->  ran  ( x  e.  A  |->  <. x ,  x >. )  C_  R
)
82, 7bitri 184 . 2  |-  ( A. x  e.  A  <. x ,  x >.  e.  R  <->  ran  ( x  e.  A  |-> 
<. x ,  x >. ) 
C_  R )
9 df-br 4034 . . 3  |-  ( x R x  <->  <. x ,  x >.  e.  R
)
109ralbii 2503 . 2  |-  ( A. x  e.  A  x R x  <->  A. x  e.  A  <. x ,  x >.  e.  R )
11 mptresid 5000 . . . . 5  |-  (  _I  |`  A )  =  ( x  e.  A  |->  x )
1211eqcomi 2200 . . . 4  |-  ( x  e.  A  |->  x )  =  (  _I  |`  A )
133fnasrn 5740 . . . 4  |-  ( x  e.  A  |->  x )  =  ran  ( x  e.  A  |->  <. x ,  x >. )
1412, 13eqtr3i 2219 . . 3  |-  (  _I  |`  A )  =  ran  ( x  e.  A  |-> 
<. x ,  x >. )
1514sseq1i 3209 . 2  |-  ( (  _I  |`  A )  C_  R  <->  ran  ( x  e.  A  |->  <. x ,  x >. )  C_  R )
168, 10, 153bitr4ri 213 1  |-  ( (  _I  |`  A )  C_  R  <->  A. x  e.  A  x R x )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2167   A.wral 2475    C_ wss 3157   <.cop 3625   class class class wbr 4033    |-> cmpt 4094    _I cid 4323   ran crn 4664    |` cres 4665    Fn wfn 5253   -->wf 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator