Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > idref | Unicode version |
Description: TODO: This is the same
as issref 4993 (which has a much longer proof).
Should we replace issref 4993 with this one? - NM 9-May-2016.
Two ways to state a relation is reflexive. (Adapted from Tarski.) (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
idref |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . . . 4 | |
2 | 1 | fmpt 5646 | . . 3 |
3 | vex 2733 | . . . . . 6 | |
4 | 3, 3 | opex 4214 | . . . . 5 |
5 | 4, 1 | fnmpti 5326 | . . . 4 |
6 | df-f 5202 | . . . 4 | |
7 | 5, 6 | mpbiran 935 | . . 3 |
8 | 2, 7 | bitri 183 | . 2 |
9 | df-br 3990 | . . 3 | |
10 | 9 | ralbii 2476 | . 2 |
11 | mptresid 4945 | . . . 4 | |
12 | 3 | fnasrn 5674 | . . . 4 |
13 | 11, 12 | eqtr3i 2193 | . . 3 |
14 | 13 | sseq1i 3173 | . 2 |
15 | 8, 10, 14 | 3bitr4ri 212 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wcel 2141 wral 2448 wss 3121 cop 3586 class class class wbr 3989 cmpt 4050 cid 4273 crn 4612 cres 4613 wfn 5193 wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |