ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idref Unicode version

Theorem idref 5838
Description: TODO: This is the same as issref 5074 (which has a much longer proof). Should we replace issref 5074 with this one? - NM 9-May-2016.

Two ways to state a relation is reflexive. (Adapted from Tarski.) (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Proof modification is discouraged.)

Assertion
Ref Expression
idref  |-  ( (  _I  |`  A )  C_  R  <->  A. x  e.  A  x R x )
Distinct variable groups:    x, A    x, R

Proof of Theorem idref
StepHypRef Expression
1 eqid 2206 . . . 4  |-  ( x  e.  A  |->  <. x ,  x >. )  =  ( x  e.  A  |->  <.
x ,  x >. )
21fmpt 5743 . . 3  |-  ( A. x  e.  A  <. x ,  x >.  e.  R  <->  ( x  e.  A  |->  <.
x ,  x >. ) : A --> R )
3 vex 2776 . . . . . 6  |-  x  e. 
_V
43, 3opex 4281 . . . . 5  |-  <. x ,  x >.  e.  _V
54, 1fnmpti 5414 . . . 4  |-  ( x  e.  A  |->  <. x ,  x >. )  Fn  A
6 df-f 5284 . . . 4  |-  ( ( x  e.  A  |->  <.
x ,  x >. ) : A --> R  <->  ( (
x  e.  A  |->  <.
x ,  x >. )  Fn  A  /\  ran  ( x  e.  A  |-> 
<. x ,  x >. ) 
C_  R ) )
75, 6mpbiran 943 . . 3  |-  ( ( x  e.  A  |->  <.
x ,  x >. ) : A --> R  <->  ran  ( x  e.  A  |->  <. x ,  x >. )  C_  R
)
82, 7bitri 184 . 2  |-  ( A. x  e.  A  <. x ,  x >.  e.  R  <->  ran  ( x  e.  A  |-> 
<. x ,  x >. ) 
C_  R )
9 df-br 4052 . . 3  |-  ( x R x  <->  <. x ,  x >.  e.  R
)
109ralbii 2513 . 2  |-  ( A. x  e.  A  x R x  <->  A. x  e.  A  <. x ,  x >.  e.  R )
11 mptresid 5022 . . . . 5  |-  (  _I  |`  A )  =  ( x  e.  A  |->  x )
1211eqcomi 2210 . . . 4  |-  ( x  e.  A  |->  x )  =  (  _I  |`  A )
133fnasrn 5771 . . . 4  |-  ( x  e.  A  |->  x )  =  ran  ( x  e.  A  |->  <. x ,  x >. )
1412, 13eqtr3i 2229 . . 3  |-  (  _I  |`  A )  =  ran  ( x  e.  A  |-> 
<. x ,  x >. )
1514sseq1i 3223 . 2  |-  ( (  _I  |`  A )  C_  R  <->  ran  ( x  e.  A  |->  <. x ,  x >. )  C_  R )
168, 10, 153bitr4ri 213 1  |-  ( (  _I  |`  A )  C_  R  <->  A. x  e.  A  x R x )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2177   A.wral 2485    C_ wss 3170   <.cop 3641   class class class wbr 4051    |-> cmpt 4113    _I cid 4343   ran crn 4684    |` cres 4685    Fn wfn 5275   -->wf 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator