ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idref Unicode version

Theorem idref 5736
Description: TODO: This is the same as issref 4993 (which has a much longer proof). Should we replace issref 4993 with this one? - NM 9-May-2016.

Two ways to state a relation is reflexive. (Adapted from Tarski.) (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Proof modification is discouraged.)

Assertion
Ref Expression
idref  |-  ( (  _I  |`  A )  C_  R  <->  A. x  e.  A  x R x )
Distinct variable groups:    x, A    x, R

Proof of Theorem idref
StepHypRef Expression
1 eqid 2170 . . . 4  |-  ( x  e.  A  |->  <. x ,  x >. )  =  ( x  e.  A  |->  <.
x ,  x >. )
21fmpt 5646 . . 3  |-  ( A. x  e.  A  <. x ,  x >.  e.  R  <->  ( x  e.  A  |->  <.
x ,  x >. ) : A --> R )
3 vex 2733 . . . . . 6  |-  x  e. 
_V
43, 3opex 4214 . . . . 5  |-  <. x ,  x >.  e.  _V
54, 1fnmpti 5326 . . . 4  |-  ( x  e.  A  |->  <. x ,  x >. )  Fn  A
6 df-f 5202 . . . 4  |-  ( ( x  e.  A  |->  <.
x ,  x >. ) : A --> R  <->  ( (
x  e.  A  |->  <.
x ,  x >. )  Fn  A  /\  ran  ( x  e.  A  |-> 
<. x ,  x >. ) 
C_  R ) )
75, 6mpbiran 935 . . 3  |-  ( ( x  e.  A  |->  <.
x ,  x >. ) : A --> R  <->  ran  ( x  e.  A  |->  <. x ,  x >. )  C_  R
)
82, 7bitri 183 . 2  |-  ( A. x  e.  A  <. x ,  x >.  e.  R  <->  ran  ( x  e.  A  |-> 
<. x ,  x >. ) 
C_  R )
9 df-br 3990 . . 3  |-  ( x R x  <->  <. x ,  x >.  e.  R
)
109ralbii 2476 . 2  |-  ( A. x  e.  A  x R x  <->  A. x  e.  A  <. x ,  x >.  e.  R )
11 mptresid 4945 . . . 4  |-  ( x  e.  A  |->  x )  =  (  _I  |`  A )
123fnasrn 5674 . . . 4  |-  ( x  e.  A  |->  x )  =  ran  ( x  e.  A  |->  <. x ,  x >. )
1311, 12eqtr3i 2193 . . 3  |-  (  _I  |`  A )  =  ran  ( x  e.  A  |-> 
<. x ,  x >. )
1413sseq1i 3173 . 2  |-  ( (  _I  |`  A )  C_  R  <->  ran  ( x  e.  A  |->  <. x ,  x >. )  C_  R )
158, 10, 143bitr4ri 212 1  |-  ( (  _I  |`  A )  C_  R  <->  A. x  e.  A  x R x )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    e. wcel 2141   A.wral 2448    C_ wss 3121   <.cop 3586   class class class wbr 3989    |-> cmpt 4050    _I cid 4273   ran crn 4612    |` cres 4613    Fn wfn 5193   -->wf 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator