Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfcnv | Unicode version |
Description: Bound-variable hypothesis builder for converse. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfcnv.1 |
Ref | Expression |
---|---|
nfcnv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 4587 | . 2 | |
2 | nfcv 2296 | . . . 4 | |
3 | nfcnv.1 | . . . 4 | |
4 | nfcv 2296 | . . . 4 | |
5 | 2, 3, 4 | nfbr 4006 | . . 3 |
6 | 5 | nfopab 4028 | . 2 |
7 | 1, 6 | nfcxfr 2293 | 1 |
Colors of variables: wff set class |
Syntax hints: wnfc 2283 class class class wbr 3961 copab 4020 ccnv 4578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-un 3102 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-opab 4022 df-cnv 4587 |
This theorem is referenced by: nfrn 4824 nffun 5186 nff1 5366 nfinf 6949 |
Copyright terms: Public domain | W3C validator |