ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcnv Unicode version

Theorem nfcnv 4841
Description: Bound-variable hypothesis builder for converse. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfcnv.1  |-  F/_ x A
Assertion
Ref Expression
nfcnv  |-  F/_ x `' A

Proof of Theorem nfcnv
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 4667 . 2  |-  `' A  =  { <. y ,  z
>.  |  z A
y }
2 nfcv 2336 . . . 4  |-  F/_ x
z
3 nfcnv.1 . . . 4  |-  F/_ x A
4 nfcv 2336 . . . 4  |-  F/_ x
y
52, 3, 4nfbr 4075 . . 3  |-  F/ x  z A y
65nfopab 4097 . 2  |-  F/_ x { <. y ,  z
>.  |  z A
y }
71, 6nfcxfr 2333 1  |-  F/_ x `' A
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2323   class class class wbr 4029   {copab 4089   `'ccnv 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-cnv 4667
This theorem is referenced by:  nfrn  4907  nffun  5277  nff1  5457  nfinf  7076
  Copyright terms: Public domain W3C validator