Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcnv2 GIF version

Theorem elcnv2 4685
 Description: Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
elcnv2 (𝐴𝑅 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Proof of Theorem elcnv2
StepHypRef Expression
1 elcnv 4684 . 2 (𝐴𝑅 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑦𝑅𝑥))
2 df-br 3898 . . . 4 (𝑦𝑅𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅)
32anbi2i 450 . . 3 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑦𝑅𝑥) ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
432exbii 1568 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑦𝑅𝑥) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
51, 4bitri 183 1 (𝐴𝑅 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
 Colors of variables: wff set class Syntax hints:   ∧ wa 103   ↔ wb 104   = wceq 1314  ∃wex 1451   ∈ wcel 1463  ⟨cop 3498   class class class wbr 3897  ◡ccnv 4506 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099 This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-cnv 4515 This theorem is referenced by:  cnvuni  4693
 Copyright terms: Public domain W3C validator