ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elelsuc GIF version

Theorem elelsuc 4387
Description: Membership in a successor. (Contributed by NM, 20-Jun-1998.)
Assertion
Ref Expression
elelsuc (𝐴𝐵𝐴 ∈ suc 𝐵)

Proof of Theorem elelsuc
StepHypRef Expression
1 orc 702 . 2 (𝐴𝐵 → (𝐴𝐵𝐴 = 𝐵))
2 elsucg 4382 . 2 (𝐴𝐵 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
31, 2mpbird 166 1 (𝐴𝐵𝐴 ∈ suc 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 698   = wceq 1343  wcel 2136  suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-suc 4349
This theorem is referenced by:  suctr  4399  ordsuc  4540  nnaordex  6495  fiintim  6894  exmidfodomrlemr  7158  exmidfodomrlemrALT  7159  3nelsucpw1  7190  ennnfonelemex  12347
  Copyright terms: Public domain W3C validator