| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elelsuc | GIF version | ||
| Description: Membership in a successor. (Contributed by NM, 20-Jun-1998.) | 
| Ref | Expression | 
|---|---|
| elelsuc | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | orc 713 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) | |
| 2 | elsucg 4439 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
| 3 | 1, 2 | mpbird 167 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2167 suc csuc 4400 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-suc 4406 | 
| This theorem is referenced by: suctr 4456 ordsuc 4599 nnaordex 6586 fiintim 6992 exmidfodomrlemr 7269 exmidfodomrlemrALT 7270 3nelsucpw1 7301 ennnfonelemex 12631 | 
| Copyright terms: Public domain | W3C validator |