ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaordex Unicode version

Theorem nnaordex 6586
Description: Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88. (Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordex  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem nnaordex
Dummy variables  b  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2260 . . . . . 6  |-  ( b  =  B  ->  ( A  e.  b  <->  A  e.  B ) )
2 eqeq2 2206 . . . . . . . 8  |-  ( b  =  B  ->  (
( A  +o  x
)  =  b  <->  ( A  +o  x )  =  B ) )
32anbi2d 464 . . . . . . 7  |-  ( b  =  B  ->  (
( (/)  e.  x  /\  ( A  +o  x
)  =  b )  <-> 
( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
43rexbidv 2498 . . . . . 6  |-  ( b  =  B  ->  ( E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b )  <->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
51, 4imbi12d 234 . . . . 5  |-  ( b  =  B  ->  (
( A  e.  b  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b ) )  <->  ( A  e.  B  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) ) )
65imbi2d 230 . . . 4  |-  ( b  =  B  ->  (
( A  e.  om  ->  ( A  e.  b  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b ) ) )  <->  ( A  e.  om  ->  ( A  e.  B  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) ) ) )
7 eleq2 2260 . . . . . 6  |-  ( b  =  (/)  ->  ( A  e.  b  <->  A  e.  (/) ) )
8 eqeq2 2206 . . . . . . . 8  |-  ( b  =  (/)  ->  ( ( A  +o  x )  =  b  <->  ( A  +o  x )  =  (/) ) )
98anbi2d 464 . . . . . . 7  |-  ( b  =  (/)  ->  ( (
(/)  e.  x  /\  ( A  +o  x
)  =  b )  <-> 
( (/)  e.  x  /\  ( A  +o  x
)  =  (/) ) ) )
109rexbidv 2498 . . . . . 6  |-  ( b  =  (/)  ->  ( E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  b )  <->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  (/) ) ) )
117, 10imbi12d 234 . . . . 5  |-  ( b  =  (/)  ->  ( ( A  e.  b  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b ) )  <->  ( A  e.  (/)  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  (/) ) ) ) )
12 eleq2 2260 . . . . . 6  |-  ( b  =  y  ->  ( A  e.  b  <->  A  e.  y ) )
13 eqeq2 2206 . . . . . . . 8  |-  ( b  =  y  ->  (
( A  +o  x
)  =  b  <->  ( A  +o  x )  =  y ) )
1413anbi2d 464 . . . . . . 7  |-  ( b  =  y  ->  (
( (/)  e.  x  /\  ( A  +o  x
)  =  b )  <-> 
( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )
1514rexbidv 2498 . . . . . 6  |-  ( b  =  y  ->  ( E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b )  <->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )
1612, 15imbi12d 234 . . . . 5  |-  ( b  =  y  ->  (
( A  e.  b  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b ) )  <->  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) ) )
17 eleq2 2260 . . . . . 6  |-  ( b  =  suc  y  -> 
( A  e.  b  <-> 
A  e.  suc  y
) )
18 eqeq2 2206 . . . . . . . 8  |-  ( b  =  suc  y  -> 
( ( A  +o  x )  =  b  <-> 
( A  +o  x
)  =  suc  y
) )
1918anbi2d 464 . . . . . . 7  |-  ( b  =  suc  y  -> 
( ( (/)  e.  x  /\  ( A  +o  x
)  =  b )  <-> 
( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
2019rexbidv 2498 . . . . . 6  |-  ( b  =  suc  y  -> 
( E. x  e. 
om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b )  <->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
2117, 20imbi12d 234 . . . . 5  |-  ( b  =  suc  y  -> 
( ( A  e.  b  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b ) )  <->  ( A  e. 
suc  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) ) )
22 noel 3454 . . . . . . 7  |-  -.  A  e.  (/)
2322pm2.21i 647 . . . . . 6  |-  ( A  e.  (/)  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  (/) ) )
2423a1i 9 . . . . 5  |-  ( A  e.  om  ->  ( A  e.  (/)  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  (/) ) ) )
25 elsuci 4438 . . . . . . 7  |-  ( A  e.  suc  y  -> 
( A  e.  y  \/  A  =  y ) )
26 simpr 110 . . . . . . . . 9  |-  ( ( ( y  e.  om  /\  A  e.  om )  /\  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )  ->  ( A  e.  y  ->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  y ) ) )
27 peano2 4631 . . . . . . . . . . . . . . 15  |-  ( x  e.  om  ->  suc  x  e.  om )
2827ad2antlr 489 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  om  /\  x  e.  om )  /\  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) )  ->  suc  x  e. 
om )
29 elelsuc 4444 . . . . . . . . . . . . . . . . 17  |-  ( (/)  e.  x  ->  (/)  e.  suc  x )
3029a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( (/)  e.  x  -> 
(/)  e.  suc  x ) )
31 nnasuc 6534 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( A  +o  suc  x )  =  suc  ( A  +o  x
) )
32 suceq 4437 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  +o  x )  =  y  ->  suc  ( A  +o  x
)  =  suc  y
)
3331, 32sylan9eq 2249 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  x  e.  om )  /\  ( A  +o  x
)  =  y )  ->  ( A  +o  suc  x )  =  suc  y )
3433ex 115 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( A  +o  x )  =  y  ->  ( A  +o  suc  x )  =  suc  y ) )
3530, 34anim12d 335 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( (/)  e.  x  /\  ( A  +o  x
)  =  y )  ->  ( (/)  e.  suc  x  /\  ( A  +o  suc  x )  =  suc  y ) ) )
3635imp 124 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  om  /\  x  e.  om )  /\  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) )  ->  ( (/)  e.  suc  x  /\  ( A  +o  suc  x )  =  suc  y ) )
37 eleq2 2260 . . . . . . . . . . . . . . . 16  |-  ( z  =  suc  x  -> 
( (/)  e.  z  <->  (/)  e.  suc  x ) )
38 oveq2 5930 . . . . . . . . . . . . . . . . 17  |-  ( z  =  suc  x  -> 
( A  +o  z
)  =  ( A  +o  suc  x ) )
3938eqeq1d 2205 . . . . . . . . . . . . . . . 16  |-  ( z  =  suc  x  -> 
( ( A  +o  z )  =  suc  y 
<->  ( A  +o  suc  x )  =  suc  y ) )
4037, 39anbi12d 473 . . . . . . . . . . . . . . 15  |-  ( z  =  suc  x  -> 
( ( (/)  e.  z  /\  ( A  +o  z )  =  suc  y )  <->  ( (/)  e.  suc  x  /\  ( A  +o  suc  x )  =  suc  y ) ) )
4140rspcev 2868 . . . . . . . . . . . . . 14  |-  ( ( suc  x  e.  om  /\  ( (/)  e.  suc  x  /\  ( A  +o  suc  x )  =  suc  y ) )  ->  E. z  e.  om  ( (/)  e.  z  /\  ( A  +o  z
)  =  suc  y
) )
4228, 36, 41syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  om  /\  x  e.  om )  /\  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) )  ->  E. z  e.  om  ( (/)  e.  z  /\  ( A  +o  z )  =  suc  y ) )
4342ex 115 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( (/)  e.  x  /\  ( A  +o  x
)  =  y )  ->  E. z  e.  om  ( (/)  e.  z  /\  ( A  +o  z
)  =  suc  y
) ) )
4443rexlimdva 2614 . . . . . . . . . . 11  |-  ( A  e.  om  ->  ( E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y )  ->  E. z  e.  om  ( (/)  e.  z  /\  ( A  +o  z
)  =  suc  y
) ) )
45 eleq2 2260 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  ( (/) 
e.  z  <->  (/)  e.  x
) )
46 oveq2 5930 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  ( A  +o  z )  =  ( A  +o  x
) )
4746eqeq1d 2205 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  (
( A  +o  z
)  =  suc  y  <->  ( A  +o  x )  =  suc  y ) )
4845, 47anbi12d 473 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
( (/)  e.  z  /\  ( A  +o  z
)  =  suc  y
)  <->  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
4948cbvrexv 2730 . . . . . . . . . . 11  |-  ( E. z  e.  om  ( (/) 
e.  z  /\  ( A  +o  z )  =  suc  y )  <->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) )
5044, 49imbitrdi 161 . . . . . . . . . 10  |-  ( A  e.  om  ->  ( E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y )  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
5150ad2antlr 489 . . . . . . . . 9  |-  ( ( ( y  e.  om  /\  A  e.  om )  /\  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )  ->  ( E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y )  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
5226, 51syld 45 . . . . . . . 8  |-  ( ( ( y  e.  om  /\  A  e.  om )  /\  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )  ->  ( A  e.  y  ->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  suc  y ) ) )
53 0lt1o 6498 . . . . . . . . . . . 12  |-  (/)  e.  1o
5453a1i 9 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  A  =  y )  -> 
(/)  e.  1o )
55 nnon 4646 . . . . . . . . . . . . 13  |-  ( A  e.  om  ->  A  e.  On )
56 oa1suc 6525 . . . . . . . . . . . . 13  |-  ( A  e.  On  ->  ( A  +o  1o )  =  suc  A )
5755, 56syl 14 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  ( A  +o  1o )  =  suc  A )
58 suceq 4437 . . . . . . . . . . . 12  |-  ( A  =  y  ->  suc  A  =  suc  y )
5957, 58sylan9eq 2249 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  A  =  y )  ->  ( A  +o  1o )  =  suc  y )
60 1onn 6578 . . . . . . . . . . . 12  |-  1o  e.  om
61 eleq2 2260 . . . . . . . . . . . . . 14  |-  ( x  =  1o  ->  ( (/) 
e.  x  <->  (/)  e.  1o ) )
62 oveq2 5930 . . . . . . . . . . . . . . 15  |-  ( x  =  1o  ->  ( A  +o  x )  =  ( A  +o  1o ) )
6362eqeq1d 2205 . . . . . . . . . . . . . 14  |-  ( x  =  1o  ->  (
( A  +o  x
)  =  suc  y  <->  ( A  +o  1o )  =  suc  y ) )
6461, 63anbi12d 473 . . . . . . . . . . . . 13  |-  ( x  =  1o  ->  (
( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
)  <->  ( (/)  e.  1o  /\  ( A  +o  1o )  =  suc  y ) ) )
6564rspcev 2868 . . . . . . . . . . . 12  |-  ( ( 1o  e.  om  /\  ( (/)  e.  1o  /\  ( A  +o  1o )  =  suc  y ) )  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) )
6660, 65mpan 424 . . . . . . . . . . 11  |-  ( (
(/)  e.  1o  /\  ( A  +o  1o )  =  suc  y )  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) )
6754, 59, 66syl2anc 411 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  A  =  y )  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) )
6867ex 115 . . . . . . . . 9  |-  ( A  e.  om  ->  ( A  =  y  ->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  suc  y ) ) )
6968ad2antlr 489 . . . . . . . 8  |-  ( ( ( y  e.  om  /\  A  e.  om )  /\  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )  ->  ( A  =  y  ->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  suc  y ) ) )
7052, 69jaod 718 . . . . . . 7  |-  ( ( ( y  e.  om  /\  A  e.  om )  /\  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )  ->  (
( A  e.  y  \/  A  =  y )  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
7125, 70syl5 32 . . . . . 6  |-  ( ( ( y  e.  om  /\  A  e.  om )  /\  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )  ->  ( A  e.  suc  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
7271exp31 364 . . . . 5  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) )  ->  ( A  e.  suc  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) ) ) )
7311, 16, 21, 24, 72finds2 4637 . . . 4  |-  ( b  e.  om  ->  ( A  e.  om  ->  ( A  e.  b  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b ) ) ) )
746, 73vtoclga 2830 . . 3  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  e.  B  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) ) )
7574impcom 125 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
76 peano1 4630 . . . . . . . . 9  |-  (/)  e.  om
77 nnaord 6567 . . . . . . . . 9  |-  ( (
(/)  e.  om  /\  x  e.  om  /\  A  e. 
om )  ->  ( (/) 
e.  x  <->  ( A  +o  (/) )  e.  ( A  +o  x ) ) )
7876, 77mp3an1 1335 . . . . . . . 8  |-  ( ( x  e.  om  /\  A  e.  om )  ->  ( (/)  e.  x  <->  ( A  +o  (/) )  e.  ( A  +o  x
) ) )
7978ancoms 268 . . . . . . 7  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( (/)  e.  x  <->  ( A  +o  (/) )  e.  ( A  +o  x
) ) )
80 nna0 6532 . . . . . . . . 9  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
8180adantr 276 . . . . . . . 8  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( A  +o  (/) )  =  A )
8281eleq1d 2265 . . . . . . 7  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( A  +o  (/) )  e.  ( A  +o  x )  <->  A  e.  ( A  +o  x
) ) )
8379, 82bitrd 188 . . . . . 6  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( (/)  e.  x  <->  A  e.  ( A  +o  x ) ) )
8483anbi1d 465 . . . . 5  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  <-> 
( A  e.  ( A  +o  x )  /\  ( A  +o  x )  =  B ) ) )
85 eleq2 2260 . . . . . 6  |-  ( ( A  +o  x )  =  B  ->  ( A  e.  ( A  +o  x )  <->  A  e.  B ) )
8685biimpac 298 . . . . 5  |-  ( ( A  e.  ( A  +o  x )  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
)
8784, 86biimtrdi 163 . . . 4  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) )
8887rexlimdva 2614 . . 3  |-  ( A  e.  om  ->  ( E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) )
8988adantr 276 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( E. x  e. 
om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) )
9075, 89impbid 129 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   E.wrex 2476   (/)c0 3450   Oncon0 4398   suc csuc 4400   omcom 4626  (class class class)co 5922   1oc1o 6467    +o coa 6471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478
This theorem is referenced by:  nnawordex  6587  ltexpi  7404
  Copyright terms: Public domain W3C validator