Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfomni Unicode version

Theorem nninfomni 16344
Description: is omniscient. Corollary 3.7 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 10-Aug-2022.)
Assertion
Ref Expression
nninfomni  |-  e. Omni

Proof of Theorem nninfomni
Dummy variables  a  b  i  k  n  q  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elequ1 2204 . . . . . . . . . . 11  |-  ( c  =  i  ->  (
c  e.  b  <->  i  e.  b ) )
21ifbid 3624 . . . . . . . . . 10  |-  ( c  =  i  ->  if ( c  e.  b ,  1o ,  (/) )  =  if (
i  e.  b ,  1o ,  (/) ) )
32cbvmptv 4179 . . . . . . . . 9  |-  ( c  e.  om  |->  if ( c  e.  b ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  b ,  1o ,  (/) ) )
43fveq2i 5629 . . . . . . . 8  |-  ( q `
 ( c  e. 
om  |->  if ( c  e.  b ,  1o ,  (/) ) ) )  =  ( q `  ( i  e.  om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )
54eqeq1i 2237 . . . . . . 7  |-  ( ( q `  ( c  e.  om  |->  if ( c  e.  b ,  1o ,  (/) ) ) )  =  1o  <->  ( q `  ( i  e.  om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o )
65ralbii 2536 . . . . . 6  |-  ( A. b  e.  suc  a ( q `  ( c  e.  om  |->  if ( c  e.  b ,  1o ,  (/) ) ) )  =  1o  <->  A. b  e.  suc  a ( q `
 ( i  e. 
om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o )
7 ifbi 3623 . . . . . 6  |-  ( ( A. b  e.  suc  a ( q `  ( c  e.  om  |->  if ( c  e.  b ,  1o ,  (/) ) ) )  =  1o  <->  A. b  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o )  ->  if ( A. b  e.  suc  a ( q `  ( c  e.  om  |->  if ( c  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. b  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
86, 7ax-mp 5 . . . . 5  |-  if ( A. b  e.  suc  a ( q `  ( c  e.  om  |->  if ( c  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. b  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )
98mpteq2i 4170 . . . 4  |-  ( a  e.  om  |->  if ( A. b  e.  suc  a ( q `  ( c  e.  om  |->  if ( c  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  =  ( a  e.  om  |->  if ( A. b  e. 
suc  a ( q `
 ( i  e. 
om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
10 elequ2 2205 . . . . . . . . . 10  |-  ( k  =  b  ->  (
i  e.  k  <->  i  e.  b ) )
1110ifbid 3624 . . . . . . . . 9  |-  ( k  =  b  ->  if ( i  e.  k ,  1o ,  (/) )  =  if (
i  e.  b ,  1o ,  (/) ) )
1211mpteq2dv 4174 . . . . . . . 8  |-  ( k  =  b  ->  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) )  =  ( i  e.  om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )
1312fveqeq2d 5634 . . . . . . 7  |-  ( k  =  b  ->  (
( q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  ( q `  ( i  e.  om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o ) )
1413cbvralv 2765 . . . . . 6  |-  ( A. k  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. b  e.  suc  a ( q `
 ( i  e. 
om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o )
15 ifbi 3623 . . . . . 6  |-  ( ( A. k  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. b  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o )  ->  if ( A. k  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. b  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
1614, 15ax-mp 5 . . . . 5  |-  if ( A. k  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. b  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )
1716mpteq2i 4170 . . . 4  |-  ( a  e.  om  |->  if ( A. k  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  =  ( a  e.  om  |->  if ( A. b  e. 
suc  a ( q `
 ( i  e. 
om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
18 suceq 4492 . . . . . . 7  |-  ( a  =  n  ->  suc  a  =  suc  n )
1918raleqdv 2734 . . . . . 6  |-  ( a  =  n  ->  ( A. k  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
2019ifbid 3624 . . . . 5  |-  ( a  =  n  ->  if ( A. k  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
2120cbvmptv 4179 . . . 4  |-  ( a  e.  om  |->  if ( A. k  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  =  ( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
229, 17, 213eqtr2i 2256 . . 3  |-  ( a  e.  om  |->  if ( A. b  e.  suc  a ( q `  ( c  e.  om  |->  if ( c  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  =  ( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
2322mpteq2i 4170 . 2  |-  ( q  e.  ( 2o  ^m )  |->  ( a  e.  om  |->  if ( A. b  e. 
suc  a ( q `
 ( c  e. 
om  |->  if ( c  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
2423nninfomnilem 16343 1  |-  e. Omni
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   (/)c0 3491   ifcif 3602    |-> cmpt 4144   suc csuc 4455   omcom 4681   ` cfv 5317  (class class class)co 6000   1oc1o 6553   2oc2o 6554    ^m cmap 6793  ℕxnninf 7282  Omnicomni 7297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1o 6560  df-2o 6561  df-map 6795  df-nninf 7283  df-omni 7298
This theorem is referenced by:  nnnninfen  16346  exmidsbthrlem  16349
  Copyright terms: Public domain W3C validator