Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfomni Unicode version

Theorem nninfomni 15663
Description: is omniscient. Corollary 3.7 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 10-Aug-2022.)
Assertion
Ref Expression
nninfomni  |-  e. Omni

Proof of Theorem nninfomni
Dummy variables  a  b  i  k  n  q  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elequ1 2171 . . . . . . . . . . 11  |-  ( c  =  i  ->  (
c  e.  b  <->  i  e.  b ) )
21ifbid 3582 . . . . . . . . . 10  |-  ( c  =  i  ->  if ( c  e.  b ,  1o ,  (/) )  =  if (
i  e.  b ,  1o ,  (/) ) )
32cbvmptv 4129 . . . . . . . . 9  |-  ( c  e.  om  |->  if ( c  e.  b ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  b ,  1o ,  (/) ) )
43fveq2i 5561 . . . . . . . 8  |-  ( q `
 ( c  e. 
om  |->  if ( c  e.  b ,  1o ,  (/) ) ) )  =  ( q `  ( i  e.  om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )
54eqeq1i 2204 . . . . . . 7  |-  ( ( q `  ( c  e.  om  |->  if ( c  e.  b ,  1o ,  (/) ) ) )  =  1o  <->  ( q `  ( i  e.  om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o )
65ralbii 2503 . . . . . 6  |-  ( A. b  e.  suc  a ( q `  ( c  e.  om  |->  if ( c  e.  b ,  1o ,  (/) ) ) )  =  1o  <->  A. b  e.  suc  a ( q `
 ( i  e. 
om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o )
7 ifbi 3581 . . . . . 6  |-  ( ( A. b  e.  suc  a ( q `  ( c  e.  om  |->  if ( c  e.  b ,  1o ,  (/) ) ) )  =  1o  <->  A. b  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o )  ->  if ( A. b  e.  suc  a ( q `  ( c  e.  om  |->  if ( c  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. b  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
86, 7ax-mp 5 . . . . 5  |-  if ( A. b  e.  suc  a ( q `  ( c  e.  om  |->  if ( c  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. b  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )
98mpteq2i 4120 . . . 4  |-  ( a  e.  om  |->  if ( A. b  e.  suc  a ( q `  ( c  e.  om  |->  if ( c  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  =  ( a  e.  om  |->  if ( A. b  e. 
suc  a ( q `
 ( i  e. 
om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
10 elequ2 2172 . . . . . . . . . 10  |-  ( k  =  b  ->  (
i  e.  k  <->  i  e.  b ) )
1110ifbid 3582 . . . . . . . . 9  |-  ( k  =  b  ->  if ( i  e.  k ,  1o ,  (/) )  =  if (
i  e.  b ,  1o ,  (/) ) )
1211mpteq2dv 4124 . . . . . . . 8  |-  ( k  =  b  ->  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) )  =  ( i  e.  om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )
1312fveqeq2d 5566 . . . . . . 7  |-  ( k  =  b  ->  (
( q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  ( q `  ( i  e.  om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o ) )
1413cbvralv 2729 . . . . . 6  |-  ( A. k  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. b  e.  suc  a ( q `
 ( i  e. 
om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o )
15 ifbi 3581 . . . . . 6  |-  ( ( A. k  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. b  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o )  ->  if ( A. k  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. b  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
1614, 15ax-mp 5 . . . . 5  |-  if ( A. k  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. b  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )
1716mpteq2i 4120 . . . 4  |-  ( a  e.  om  |->  if ( A. k  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  =  ( a  e.  om  |->  if ( A. b  e. 
suc  a ( q `
 ( i  e. 
om  |->  if ( i  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
18 suceq 4437 . . . . . . 7  |-  ( a  =  n  ->  suc  a  =  suc  n )
1918raleqdv 2699 . . . . . 6  |-  ( a  =  n  ->  ( A. k  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
2019ifbid 3582 . . . . 5  |-  ( a  =  n  ->  if ( A. k  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
2120cbvmptv 4129 . . . 4  |-  ( a  e.  om  |->  if ( A. k  e.  suc  a ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  =  ( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
229, 17, 213eqtr2i 2223 . . 3  |-  ( a  e.  om  |->  if ( A. b  e.  suc  a ( q `  ( c  e.  om  |->  if ( c  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  =  ( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
2322mpteq2i 4120 . 2  |-  ( q  e.  ( 2o  ^m )  |->  ( a  e.  om  |->  if ( A. b  e. 
suc  a ( q `
 ( c  e. 
om  |->  if ( c  e.  b ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
2423nninfomnilem 15662 1  |-  e. Omni
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   (/)c0 3450   ifcif 3561    |-> cmpt 4094   suc csuc 4400   omcom 4626   ` cfv 5258  (class class class)co 5922   1oc1o 6467   2oc2o 6468    ^m cmap 6707  ℕxnninf 7185  Omnicomni 7200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1o 6474  df-2o 6475  df-map 6709  df-nninf 7186  df-omni 7201
This theorem is referenced by:  nnnninfen  15665  exmidsbthrlem  15666
  Copyright terms: Public domain W3C validator