Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsellemqall Unicode version

Theorem nninfsellemqall 14420
Description: Lemma for nninfsel 14422. (Contributed by Jim Kingdon, 9-Aug-2022.)
Hypotheses
Ref Expression
nninfsel.e  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
nninfsel.q  |-  ( ph  ->  Q  e.  ( 2o 
^m ) )
nninfsel.1  |-  ( ph  ->  ( Q `  ( E `  Q )
)  =  1o )
nninfsel.n  |-  ( ph  ->  N  e.  om )
Assertion
Ref Expression
nninfsellemqall  |-  ( ph  ->  ( Q `  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )  =  1o )
Distinct variable groups:    i, N    Q, n, q    i, n    ph, n    i, k, n    k, q
Allowed substitution hints:    ph( i, k, q)    Q( i, k)    E( i, k, n, q)    N( k, n, q)

Proof of Theorem nninfsellemqall
Dummy variables  x  a  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfsel.n . 2  |-  ( ph  ->  N  e.  om )
2 elequ2 2153 . . . . . . . 8  |-  ( x  =  y  ->  (
i  e.  x  <->  i  e.  y ) )
32ifbid 3555 . . . . . . 7  |-  ( x  =  y  ->  if ( i  e.  x ,  1o ,  (/) )  =  if ( i  e.  y ,  1o ,  (/) ) )
43mpteq2dv 4091 . . . . . 6  |-  ( x  =  y  ->  (
i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )
54fveq2d 5515 . . . . 5  |-  ( x  =  y  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) ) )
65eqeq1d 2186 . . . 4  |-  ( x  =  y  ->  (
( Q `  (
i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  1o  <->  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )
76imbi2d 230 . . 3  |-  ( x  =  y  ->  (
( ph  ->  ( Q `
 ( i  e. 
om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  1o )  <->  ( ph  ->  ( Q `  (
i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) ) )
8 eleq2 2241 . . . . . . . 8  |-  ( x  =  N  ->  (
i  e.  x  <->  i  e.  N ) )
98ifbid 3555 . . . . . . 7  |-  ( x  =  N  ->  if ( i  e.  x ,  1o ,  (/) )  =  if ( i  e.  N ,  1o ,  (/) ) )
109mpteq2dv 4091 . . . . . 6  |-  ( x  =  N  ->  (
i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )
1110fveq2d 5515 . . . . 5  |-  ( x  =  N  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  ( Q `  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) ) )
1211eqeq1d 2186 . . . 4  |-  ( x  =  N  ->  (
( Q `  (
i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  1o  <->  ( Q `  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )  =  1o ) )
1312imbi2d 230 . . 3  |-  ( x  =  N  ->  (
( ph  ->  ( Q `
 ( i  e. 
om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  1o )  <->  ( ph  ->  ( Q `  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )  =  1o ) ) )
14 1n0 6427 . . . . . . 7  |-  1o  =/=  (/)
1514neii 2349 . . . . . 6  |-  -.  1o  =  (/)
16 nninfsel.e . . . . . . . . . . . 12  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
17 elequ2 2153 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  y  ->  (
i  e.  k  <->  i  e.  y ) )
1817ifbid 3555 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  y  ->  if ( i  e.  k ,  1o ,  (/) )  =  if (
i  e.  y ,  1o ,  (/) ) )
1918mpteq2dv 4091 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  y  ->  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) )  =  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )
2019fveq2d 5515 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  y  ->  (
q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  ( q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) ) )
2120eqeq1d 2186 . . . . . . . . . . . . . . . . 17  |-  ( k  =  y  ->  (
( q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  ( q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )
2221cbvralv 2703 . . . . . . . . . . . . . . . 16  |-  ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. y  e.  suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o )
23 elequ1 2152 . . . . . . . . . . . . . . . . . . . . 21  |-  ( i  =  a  ->  (
i  e.  y  <->  a  e.  y ) )
2423ifbid 3555 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  =  a  ->  if ( i  e.  y ,  1o ,  (/) )  =  if (
a  e.  y ,  1o ,  (/) ) )
2524cbvmptv 4096 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) )  =  ( a  e. 
om  |->  if ( a  e.  y ,  1o ,  (/) ) )
2625fveq2i 5514 . . . . . . . . . . . . . . . . . 18  |-  ( q `
 ( i  e. 
om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  ( q `  ( a  e.  om  |->  if ( a  e.  y ,  1o ,  (/) ) ) )
2726eqeq1i 2185 . . . . . . . . . . . . . . . . 17  |-  ( ( q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o  <->  ( q `  ( a  e.  om  |->  if ( a  e.  y ,  1o ,  (/) ) ) )  =  1o )
2827ralbii 2483 . . . . . . . . . . . . . . . 16  |-  ( A. y  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o  <->  A. y  e.  suc  n ( q `
 ( a  e. 
om  |->  if ( a  e.  y ,  1o ,  (/) ) ) )  =  1o )
2922, 28bitri 184 . . . . . . . . . . . . . . 15  |-  ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. y  e.  suc  n ( q `
 ( a  e. 
om  |->  if ( a  e.  y ,  1o ,  (/) ) ) )  =  1o )
30 ifbi 3554 . . . . . . . . . . . . . . 15  |-  ( ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. y  e.  suc  n ( q `  ( a  e.  om  |->  if ( a  e.  y ,  1o ,  (/) ) ) )  =  1o )  ->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. y  e.  suc  n ( q `  ( a  e.  om  |->  if ( a  e.  y ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
3129, 30ax-mp 5 . . . . . . . . . . . . . 14  |-  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. y  e.  suc  n ( q `  ( a  e.  om  |->  if ( a  e.  y ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )
3231mpteq2i 4087 . . . . . . . . . . . . 13  |-  ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  =  ( n  e.  om  |->  if ( A. y  e. 
suc  n ( q `
 ( a  e. 
om  |->  if ( a  e.  y ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
3332mpteq2i 4087 . . . . . . . . . . . 12  |-  ( q  e.  ( 2o  ^m )  |->  ( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. y  e.  suc  n ( q `  ( a  e.  om  |->  if ( a  e.  y ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
3416, 33eqtri 2198 . . . . . . . . . . 11  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. y  e.  suc  n ( q `  ( a  e.  om  |->  if ( a  e.  y ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
35 nninfsel.q . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  ( 2o 
^m ) )
3635ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
om  /\  A. y  e.  x  ( ph  ->  ( Q `  (
i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  /\  ( Q `
 ( i  e. 
om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  (/) )  ->  Q  e.  ( 2o  ^m ) )
37 nninfsel.1 . . . . . . . . . . . 12  |-  ( ph  ->  ( Q `  ( E `  Q )
)  =  1o )
3837ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
om  /\  A. y  e.  x  ( ph  ->  ( Q `  (
i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  /\  ( Q `
 ( i  e. 
om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  (/) )  ->  ( Q `  ( E `  Q ) )  =  1o )
39 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( x  e.  om  /\ 
A. y  e.  x  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  ->  x  e.  om )
4039adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
om  /\  A. y  e.  x  ( ph  ->  ( Q `  (
i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  /\  ( Q `
 ( i  e. 
om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  (/) )  ->  x  e.  om )
41 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  om  /\ 
A. y  e.  x  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  ->  ph )
42 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  om  /\ 
A. y  e.  x  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  ->  A. y  e.  x  ( ph  ->  ( Q `  (
i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )
43 r19.21v 2554 . . . . . . . . . . . . . . 15  |-  ( A. y  e.  x  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o )  <->  ( ph  ->  A. y  e.  x  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )
4442, 43sylib 122 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  om  /\ 
A. y  e.  x  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  ->  ( ph  ->  A. y  e.  x  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )
4541, 44mpd 13 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  om  /\ 
A. y  e.  x  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  ->  A. y  e.  x  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o )
4625fveq2i 5514 . . . . . . . . . . . . . . 15  |-  ( Q `
 ( i  e. 
om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  ( Q `  ( a  e.  om  |->  if ( a  e.  y ,  1o ,  (/) ) ) )
4746eqeq1i 2185 . . . . . . . . . . . . . 14  |-  ( ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o  <->  ( Q `  ( a  e.  om  |->  if ( a  e.  y ,  1o ,  (/) ) ) )  =  1o )
4847ralbii 2483 . . . . . . . . . . . . 13  |-  ( A. y  e.  x  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o  <->  A. y  e.  x  ( Q `  ( a  e.  om  |->  if ( a  e.  y ,  1o ,  (/) ) ) )  =  1o )
4945, 48sylib 122 . . . . . . . . . . . 12  |-  ( ( ( x  e.  om  /\ 
A. y  e.  x  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  ->  A. y  e.  x  ( Q `  ( a  e.  om  |->  if ( a  e.  y ,  1o ,  (/) ) ) )  =  1o )
5049adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
om  /\  A. y  e.  x  ( ph  ->  ( Q `  (
i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  /\  ( Q `
 ( i  e. 
om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  (/) )  ->  A. y  e.  x  ( Q `  ( a  e.  om  |->  if ( a  e.  y ,  1o ,  (/) ) ) )  =  1o )
51 elequ1 2152 . . . . . . . . . . . . . . 15  |-  ( i  =  a  ->  (
i  e.  x  <->  a  e.  x ) )
5251ifbid 3555 . . . . . . . . . . . . . 14  |-  ( i  =  a  ->  if ( i  e.  x ,  1o ,  (/) )  =  if ( a  e.  x ,  1o ,  (/) ) )
5352cbvmptv 4096 . . . . . . . . . . . . 13  |-  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) )  =  ( a  e. 
om  |->  if ( a  e.  x ,  1o ,  (/) ) )
5453fveq2i 5514 . . . . . . . . . . . 12  |-  ( Q `
 ( i  e. 
om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  ( Q `  ( a  e.  om  |->  if ( a  e.  x ,  1o ,  (/) ) ) )
55 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( x  e. 
om  /\  A. y  e.  x  ( ph  ->  ( Q `  (
i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  /\  ( Q `
 ( i  e. 
om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  (/) )  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  (/) )
5654, 55eqtr3id 2224 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
om  /\  A. y  e.  x  ( ph  ->  ( Q `  (
i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  /\  ( Q `
 ( i  e. 
om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  (/) )  ->  ( Q `  ( a  e.  om  |->  if ( a  e.  x ,  1o ,  (/) ) ) )  =  (/) )
5734, 36, 38, 40, 50, 56nninfsellemeq 14419 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  A. y  e.  x  ( ph  ->  ( Q `  (
i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  /\  ( Q `
 ( i  e. 
om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  (/) )  ->  ( E `  Q )  =  ( a  e. 
om  |->  if ( a  e.  x ,  1o ,  (/) ) ) )
5857, 53eqtr4di 2228 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  A. y  e.  x  ( ph  ->  ( Q `  (
i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  /\  ( Q `
 ( i  e. 
om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  (/) )  ->  ( E `  Q )  =  ( i  e. 
om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )
5958fveq2d 5515 . . . . . . . 8  |-  ( ( ( ( x  e. 
om  /\  A. y  e.  x  ( ph  ->  ( Q `  (
i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  /\  ( Q `
 ( i  e. 
om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  (/) )  ->  ( Q `  ( E `  Q ) )  =  ( Q `  (
i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) ) )
6059, 38, 553eqtr3d 2218 . . . . . . 7  |-  ( ( ( ( x  e. 
om  /\  A. y  e.  x  ( ph  ->  ( Q `  (
i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  /\  ( Q `
 ( i  e. 
om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  (/) )  ->  1o  =  (/) )
6160ex 115 . . . . . 6  |-  ( ( ( x  e.  om  /\ 
A. y  e.  x  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  ->  ( ( Q `  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  (/)  ->  1o  =  (/) ) )
6215, 61mtoi 664 . . . . 5  |-  ( ( ( x  e.  om  /\ 
A. y  e.  x  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  ->  -.  ( Q `  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  (/) )
6335adantl 277 . . . . . . . . . 10  |-  ( ( ( x  e.  om  /\ 
A. y  e.  x  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  ->  Q  e.  ( 2o  ^m ) )
64 elmapi 6664 . . . . . . . . . 10  |-  ( Q  e.  ( 2o  ^m )  ->  Q : --> 2o )
6563, 64syl 14 . . . . . . . . 9  |-  ( ( ( x  e.  om  /\ 
A. y  e.  x  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  ->  Q : --> 2o )
66 nnnninf 7118 . . . . . . . . . 10  |-  ( x  e.  om  ->  (
i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) )  e.
)
6739, 66syl 14 . . . . . . . . 9  |-  ( ( ( x  e.  om  /\ 
A. y  e.  x  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  ->  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) )  e. )
6865, 67ffvelcdmd 5648 . . . . . . . 8  |-  ( ( ( x  e.  om  /\ 
A. y  e.  x  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  e.  2o )
69 df2o3 6425 . . . . . . . 8  |-  2o  =  { (/) ,  1o }
7068, 69eleqtrdi 2270 . . . . . . 7  |-  ( ( ( x  e.  om  /\ 
A. y  e.  x  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  e.  { (/) ,  1o } )
71 elpri 3614 . . . . . . 7  |-  ( ( Q `  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  e.  { (/) ,  1o }  ->  (
( Q `  (
i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  (/)  \/  ( Q `  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  1o ) )
7270, 71syl 14 . . . . . 6  |-  ( ( ( x  e.  om  /\ 
A. y  e.  x  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  ->  ( ( Q `  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  (/)  \/  ( Q `  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  1o ) )
7372orcomd 729 . . . . 5  |-  ( ( ( x  e.  om  /\ 
A. y  e.  x  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  ->  ( ( Q `  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  1o  \/  ( Q `  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  (/) ) )
7462, 73ecased 1349 . . . 4  |-  ( ( ( x  e.  om  /\ 
A. y  e.  x  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o ) )  /\  ph )  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  1o )
7574exp31 364 . . 3  |-  ( x  e.  om  ->  ( A. y  e.  x  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  y ,  1o ,  (/) ) ) )  =  1o )  ->  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  x ,  1o ,  (/) ) ) )  =  1o ) ) )
767, 13, 75omsinds 4618 . 2  |-  ( N  e.  om  ->  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )  =  1o ) )
771, 76mpcom 36 1  |-  ( ph  ->  ( Q `  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )  =  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148   A.wral 2455   (/)c0 3422   ifcif 3534   {cpr 3592    |-> cmpt 4061   suc csuc 4362   omcom 4586   -->wf 5208   ` cfv 5212  (class class class)co 5869   1oc1o 6404   2oc2o 6405    ^m cmap 6642  ℕxnninf 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1o 6411  df-2o 6412  df-map 6644  df-nninf 7113
This theorem is referenced by:  nninfsellemeqinf  14421  nninfsel  14422
  Copyright terms: Public domain W3C validator