ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfvm Unicode version

Theorem elfvm 5660
Description: If a function value has a member, the function is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
Assertion
Ref Expression
elfvm  |-  ( A  e.  ( F `  B )  ->  E. j 
j  e.  F )
Distinct variable group:    j, F
Allowed substitution hints:    A( j)    B( j)

Proof of Theorem elfvm
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliotaeu 5307 . . . 4  |-  ( A  e.  ( iota x B F x )  ->  E! x  B F x )
2 df-fv 5326 . . . 4  |-  ( F `
 B )  =  ( iota x B F x )
31, 2eleq2s 2324 . . 3  |-  ( A  e.  ( F `  B )  ->  E! x  B F x )
4 euex 2107 . . 3  |-  ( E! x  B F x  ->  E. x  B F x )
5 brm 4134 . . . 4  |-  ( B F x  ->  E. k 
k  e.  F )
65exlimiv 1644 . . 3  |-  ( E. x  B F x  ->  E. k  k  e.  F )
73, 4, 63syl 17 . 2  |-  ( A  e.  ( F `  B )  ->  E. k 
k  e.  F )
8 eleq1w 2290 . . 3  |-  ( k  =  j  ->  (
k  e.  F  <->  j  e.  F ) )
98cbvexv 1965 . 2  |-  ( E. k  k  e.  F  <->  E. j  j  e.  F
)
107, 9sylib 122 1  |-  ( A  e.  ( F `  B )  ->  E. j 
j  e.  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1538   E!weu 2077    e. wcel 2200   class class class wbr 4083   iotacio 5276   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sn 3672  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326
This theorem is referenced by:  basm  13094
  Copyright terms: Public domain W3C validator