| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elfvm | Unicode version | ||
| Description: If a function value has a member, the function is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.) | 
| Ref | Expression | 
|---|---|
| elfvm | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eliotaeu 5247 | 
. . . 4
 | |
| 2 | df-fv 5266 | 
. . . 4
 | |
| 3 | 1, 2 | eleq2s 2291 | 
. . 3
 | 
| 4 | euex 2075 | 
. . 3
 | |
| 5 | brm 4083 | 
. . . 4
 | |
| 6 | 5 | exlimiv 1612 | 
. . 3
 | 
| 7 | 3, 4, 6 | 3syl 17 | 
. 2
 | 
| 8 | eleq1w 2257 | 
. . 3
 | |
| 9 | 8 | cbvexv 1933 | 
. 2
 | 
| 10 | 7, 9 | sylib 122 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sn 3628 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 | 
| This theorem is referenced by: basm 12739 | 
| Copyright terms: Public domain | W3C validator |