ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfvm Unicode version

Theorem elfvm 5632
Description: If a function value has a member, the function is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
Assertion
Ref Expression
elfvm  |-  ( A  e.  ( F `  B )  ->  E. j 
j  e.  F )
Distinct variable group:    j, F
Allowed substitution hints:    A( j)    B( j)

Proof of Theorem elfvm
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliotaeu 5279 . . . 4  |-  ( A  e.  ( iota x B F x )  ->  E! x  B F x )
2 df-fv 5298 . . . 4  |-  ( F `
 B )  =  ( iota x B F x )
31, 2eleq2s 2302 . . 3  |-  ( A  e.  ( F `  B )  ->  E! x  B F x )
4 euex 2085 . . 3  |-  ( E! x  B F x  ->  E. x  B F x )
5 brm 4110 . . . 4  |-  ( B F x  ->  E. k 
k  e.  F )
65exlimiv 1622 . . 3  |-  ( E. x  B F x  ->  E. k  k  e.  F )
73, 4, 63syl 17 . 2  |-  ( A  e.  ( F `  B )  ->  E. k 
k  e.  F )
8 eleq1w 2268 . . 3  |-  ( k  =  j  ->  (
k  e.  F  <->  j  e.  F ) )
98cbvexv 1943 . 2  |-  ( E. k  k  e.  F  <->  E. j  j  e.  F
)
107, 9sylib 122 1  |-  ( A  e.  ( F `  B )  ->  E. j 
j  e.  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1516   E!weu 2055    e. wcel 2178   class class class wbr 4059   iotacio 5249   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-sn 3649  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298
This theorem is referenced by:  basm  13008
  Copyright terms: Public domain W3C validator