ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfvm Unicode version

Theorem elfvm 5587
Description: If a function value has a member, the function is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
Assertion
Ref Expression
elfvm  |-  ( A  e.  ( F `  B )  ->  E. j 
j  e.  F )
Distinct variable group:    j, F
Allowed substitution hints:    A( j)    B( j)

Proof of Theorem elfvm
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliotaeu 5243 . . . 4  |-  ( A  e.  ( iota x B F x )  ->  E! x  B F x )
2 df-fv 5262 . . . 4  |-  ( F `
 B )  =  ( iota x B F x )
31, 2eleq2s 2288 . . 3  |-  ( A  e.  ( F `  B )  ->  E! x  B F x )
4 euex 2072 . . 3  |-  ( E! x  B F x  ->  E. x  B F x )
5 brm 4079 . . . 4  |-  ( B F x  ->  E. k 
k  e.  F )
65exlimiv 1609 . . 3  |-  ( E. x  B F x  ->  E. k  k  e.  F )
73, 4, 63syl 17 . 2  |-  ( A  e.  ( F `  B )  ->  E. k 
k  e.  F )
8 eleq1w 2254 . . 3  |-  ( k  =  j  ->  (
k  e.  F  <->  j  e.  F ) )
98cbvexv 1930 . 2  |-  ( E. k  k  e.  F  <->  E. j  j  e.  F
)
107, 9sylib 122 1  |-  ( A  e.  ( F `  B )  ->  E. j 
j  e.  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1503   E!weu 2042    e. wcel 2164   class class class wbr 4029   iotacio 5213   ` cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-sn 3624  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262
This theorem is referenced by:  basm  12679
  Copyright terms: Public domain W3C validator