| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfvm | Unicode version | ||
| Description: If a function value has a member, the function is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.) |
| Ref | Expression |
|---|---|
| elfvm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliotaeu 5260 |
. . . 4
| |
| 2 | df-fv 5279 |
. . . 4
| |
| 3 | 1, 2 | eleq2s 2300 |
. . 3
|
| 4 | euex 2084 |
. . 3
| |
| 5 | brm 4094 |
. . . 4
| |
| 6 | 5 | exlimiv 1621 |
. . 3
|
| 7 | 3, 4, 6 | 3syl 17 |
. 2
|
| 8 | eleq1w 2266 |
. . 3
| |
| 9 | 8 | cbvexv 1942 |
. 2
|
| 10 | 7, 9 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-sn 3639 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 |
| This theorem is referenced by: basm 12893 |
| Copyright terms: Public domain | W3C validator |