ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basm Unicode version

Theorem basm 12679
Description: A structure whose base is inhabited is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
Hypothesis
Ref Expression
basm.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
basm  |-  ( A  e.  B  ->  E. j 
j  e.  G )
Distinct variable group:    j, G
Allowed substitution hints:    A( j)    B( j)

Proof of Theorem basm
StepHypRef Expression
1 id 19 . . 3  |-  ( A  e.  B  ->  A  e.  B )
2 basm.b . . . 4  |-  B  =  ( Base `  G
)
3 baseid 12672 . . . . 5  |-  Base  = Slot  ( Base `  ndx )
42basmex 12677 . . . . 5  |-  ( A  e.  B  ->  G  e.  _V )
5 basendxnn 12674 . . . . . 6  |-  ( Base `  ndx )  e.  NN
65a1i 9 . . . . 5  |-  ( A  e.  B  ->  ( Base `  ndx )  e.  NN )
73, 4, 6strnfvnd 12638 . . . 4  |-  ( A  e.  B  ->  ( Base `  G )  =  ( G `  ( Base `  ndx ) ) )
82, 7eqtrid 2238 . . 3  |-  ( A  e.  B  ->  B  =  ( G `  ( Base `  ndx ) ) )
91, 8eleqtrd 2272 . 2  |-  ( A  e.  B  ->  A  e.  ( G `  ( Base `  ndx ) ) )
10 elfvm 5587 . 2  |-  ( A  e.  ( G `  ( Base `  ndx ) )  ->  E. j  j  e.  G )
119, 10syl 14 1  |-  ( A  e.  B  ->  E. j 
j  e.  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760   ` cfv 5254   NNcn 8982   ndxcnx 12615   Basecbs 12618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624
This theorem is referenced by:  relelbasov  12680
  Copyright terms: Public domain W3C validator