ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basm Unicode version

Theorem basm 12943
Description: A structure whose base is inhabited is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
Hypothesis
Ref Expression
basm.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
basm  |-  ( A  e.  B  ->  E. j 
j  e.  G )
Distinct variable group:    j, G
Allowed substitution hints:    A( j)    B( j)

Proof of Theorem basm
StepHypRef Expression
1 id 19 . . 3  |-  ( A  e.  B  ->  A  e.  B )
2 basm.b . . . 4  |-  B  =  ( Base `  G
)
3 baseid 12936 . . . . 5  |-  Base  = Slot  ( Base `  ndx )
42basmex 12941 . . . . 5  |-  ( A  e.  B  ->  G  e.  _V )
5 basendxnn 12938 . . . . . 6  |-  ( Base `  ndx )  e.  NN
65a1i 9 . . . . 5  |-  ( A  e.  B  ->  ( Base `  ndx )  e.  NN )
73, 4, 6strnfvnd 12902 . . . 4  |-  ( A  e.  B  ->  ( Base `  G )  =  ( G `  ( Base `  ndx ) ) )
82, 7eqtrid 2251 . . 3  |-  ( A  e.  B  ->  B  =  ( G `  ( Base `  ndx ) ) )
91, 8eleqtrd 2285 . 2  |-  ( A  e.  B  ->  A  e.  ( G `  ( Base `  ndx ) ) )
10 elfvm 5619 . 2  |-  ( A  e.  ( G `  ( Base `  ndx ) )  ->  E. j  j  e.  G )
119, 10syl 14 1  |-  ( A  e.  B  ->  E. j 
j  e.  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   E.wex 1516    e. wcel 2177   _Vcvv 2773   ` cfv 5277   NNcn 9049   ndxcnx 12879   Basecbs 12882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-cnex 8029  ax-resscn 8030  ax-1re 8032  ax-addrcl 8035
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3001  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-iota 5238  df-fun 5279  df-fn 5280  df-fv 5285  df-inn 9050  df-ndx 12885  df-slot 12886  df-base 12888
This theorem is referenced by:  relelbasov  12944
  Copyright terms: Public domain W3C validator