ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basm Unicode version

Theorem basm 12682
Description: A structure whose base is inhabited is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
Hypothesis
Ref Expression
basm.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
basm  |-  ( A  e.  B  ->  E. j 
j  e.  G )
Distinct variable group:    j, G
Allowed substitution hints:    A( j)    B( j)

Proof of Theorem basm
StepHypRef Expression
1 id 19 . . 3  |-  ( A  e.  B  ->  A  e.  B )
2 basm.b . . . 4  |-  B  =  ( Base `  G
)
3 baseid 12675 . . . . 5  |-  Base  = Slot  ( Base `  ndx )
42basmex 12680 . . . . 5  |-  ( A  e.  B  ->  G  e.  _V )
5 basendxnn 12677 . . . . . 6  |-  ( Base `  ndx )  e.  NN
65a1i 9 . . . . 5  |-  ( A  e.  B  ->  ( Base `  ndx )  e.  NN )
73, 4, 6strnfvnd 12641 . . . 4  |-  ( A  e.  B  ->  ( Base `  G )  =  ( G `  ( Base `  ndx ) ) )
82, 7eqtrid 2238 . . 3  |-  ( A  e.  B  ->  B  =  ( G `  ( Base `  ndx ) ) )
91, 8eleqtrd 2272 . 2  |-  ( A  e.  B  ->  A  e.  ( G `  ( Base `  ndx ) ) )
10 elfvm 5588 . 2  |-  ( A  e.  ( G `  ( Base `  ndx ) )  ->  E. j  j  e.  G )
119, 10syl 14 1  |-  ( A  e.  B  ->  E. j 
j  e.  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760   ` cfv 5255   NNcn 8984   ndxcnx 12618   Basecbs 12621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627
This theorem is referenced by:  relelbasov  12683
  Copyright terms: Public domain W3C validator