ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basm Unicode version

Theorem basm 12739
Description: A structure whose base is inhabited is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
Hypothesis
Ref Expression
basm.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
basm  |-  ( A  e.  B  ->  E. j 
j  e.  G )
Distinct variable group:    j, G
Allowed substitution hints:    A( j)    B( j)

Proof of Theorem basm
StepHypRef Expression
1 id 19 . . 3  |-  ( A  e.  B  ->  A  e.  B )
2 basm.b . . . 4  |-  B  =  ( Base `  G
)
3 baseid 12732 . . . . 5  |-  Base  = Slot  ( Base `  ndx )
42basmex 12737 . . . . 5  |-  ( A  e.  B  ->  G  e.  _V )
5 basendxnn 12734 . . . . . 6  |-  ( Base `  ndx )  e.  NN
65a1i 9 . . . . 5  |-  ( A  e.  B  ->  ( Base `  ndx )  e.  NN )
73, 4, 6strnfvnd 12698 . . . 4  |-  ( A  e.  B  ->  ( Base `  G )  =  ( G `  ( Base `  ndx ) ) )
82, 7eqtrid 2241 . . 3  |-  ( A  e.  B  ->  B  =  ( G `  ( Base `  ndx ) ) )
91, 8eleqtrd 2275 . 2  |-  ( A  e.  B  ->  A  e.  ( G `  ( Base `  ndx ) ) )
10 elfvm 5591 . 2  |-  ( A  e.  ( G `  ( Base `  ndx ) )  ->  E. j  j  e.  G )
119, 10syl 14 1  |-  ( A  e.  B  ->  E. j 
j  e.  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763   ` cfv 5258   NNcn 8990   ndxcnx 12675   Basecbs 12678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684
This theorem is referenced by:  relelbasov  12740
  Copyright terms: Public domain W3C validator