ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basm Unicode version

Theorem basm 13089
Description: A structure whose base is inhabited is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
Hypothesis
Ref Expression
basm.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
basm  |-  ( A  e.  B  ->  E. j 
j  e.  G )
Distinct variable group:    j, G
Allowed substitution hints:    A( j)    B( j)

Proof of Theorem basm
StepHypRef Expression
1 id 19 . . 3  |-  ( A  e.  B  ->  A  e.  B )
2 basm.b . . . 4  |-  B  =  ( Base `  G
)
3 baseid 13081 . . . . 5  |-  Base  = Slot  ( Base `  ndx )
42basmex 13087 . . . . 5  |-  ( A  e.  B  ->  G  e.  _V )
5 basendxnn 13083 . . . . . 6  |-  ( Base `  ndx )  e.  NN
65a1i 9 . . . . 5  |-  ( A  e.  B  ->  ( Base `  ndx )  e.  NN )
73, 4, 6strnfvnd 13047 . . . 4  |-  ( A  e.  B  ->  ( Base `  G )  =  ( G `  ( Base `  ndx ) ) )
82, 7eqtrid 2274 . . 3  |-  ( A  e.  B  ->  B  =  ( G `  ( Base `  ndx ) ) )
91, 8eleqtrd 2308 . 2  |-  ( A  e.  B  ->  A  e.  ( G `  ( Base `  ndx ) ) )
10 elfvm 5659 . 2  |-  ( A  e.  ( G `  ( Base `  ndx ) )  ->  E. j  j  e.  G )
119, 10syl 14 1  |-  ( A  e.  B  ->  E. j 
j  e.  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799   ` cfv 5317   NNcn 9106   ndxcnx 13024   Basecbs 13027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033
This theorem is referenced by:  relelbasov  13090
  Copyright terms: Public domain W3C validator