ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfvm GIF version

Theorem elfvm 5656
Description: If a function value has a member, the function is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
Assertion
Ref Expression
elfvm (𝐴 ∈ (𝐹𝐵) → ∃𝑗 𝑗𝐹)
Distinct variable group:   𝑗,𝐹
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑗)

Proof of Theorem elfvm
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliotaeu 5303 . . . 4 (𝐴 ∈ (℩𝑥𝐵𝐹𝑥) → ∃!𝑥 𝐵𝐹𝑥)
2 df-fv 5322 . . . 4 (𝐹𝐵) = (℩𝑥𝐵𝐹𝑥)
31, 2eleq2s 2324 . . 3 (𝐴 ∈ (𝐹𝐵) → ∃!𝑥 𝐵𝐹𝑥)
4 euex 2107 . . 3 (∃!𝑥 𝐵𝐹𝑥 → ∃𝑥 𝐵𝐹𝑥)
5 brm 4133 . . . 4 (𝐵𝐹𝑥 → ∃𝑘 𝑘𝐹)
65exlimiv 1644 . . 3 (∃𝑥 𝐵𝐹𝑥 → ∃𝑘 𝑘𝐹)
73, 4, 63syl 17 . 2 (𝐴 ∈ (𝐹𝐵) → ∃𝑘 𝑘𝐹)
8 eleq1w 2290 . . 3 (𝑘 = 𝑗 → (𝑘𝐹𝑗𝐹))
98cbvexv 1965 . 2 (∃𝑘 𝑘𝐹 ↔ ∃𝑗 𝑗𝐹)
107, 9sylib 122 1 (𝐴 ∈ (𝐹𝐵) → ∃𝑗 𝑗𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1538  ∃!weu 2077  wcel 2200   class class class wbr 4082  cio 5272  cfv 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sn 3672  df-uni 3888  df-br 4083  df-iota 5274  df-fv 5322
This theorem is referenced by:  basm  13080
  Copyright terms: Public domain W3C validator