![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfvm | GIF version |
Description: If a function value has a member, the function is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.) |
Ref | Expression |
---|---|
elfvm | ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃𝑗 𝑗 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliotaeu 5243 | . . . 4 ⊢ (𝐴 ∈ (℩𝑥𝐵𝐹𝑥) → ∃!𝑥 𝐵𝐹𝑥) | |
2 | df-fv 5262 | . . . 4 ⊢ (𝐹‘𝐵) = (℩𝑥𝐵𝐹𝑥) | |
3 | 1, 2 | eleq2s 2288 | . . 3 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃!𝑥 𝐵𝐹𝑥) |
4 | euex 2072 | . . 3 ⊢ (∃!𝑥 𝐵𝐹𝑥 → ∃𝑥 𝐵𝐹𝑥) | |
5 | brm 4079 | . . . 4 ⊢ (𝐵𝐹𝑥 → ∃𝑘 𝑘 ∈ 𝐹) | |
6 | 5 | exlimiv 1609 | . . 3 ⊢ (∃𝑥 𝐵𝐹𝑥 → ∃𝑘 𝑘 ∈ 𝐹) |
7 | 3, 4, 6 | 3syl 17 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃𝑘 𝑘 ∈ 𝐹) |
8 | eleq1w 2254 | . . 3 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐹 ↔ 𝑗 ∈ 𝐹)) | |
9 | 8 | cbvexv 1930 | . 2 ⊢ (∃𝑘 𝑘 ∈ 𝐹 ↔ ∃𝑗 𝑗 ∈ 𝐹) |
10 | 7, 9 | sylib 122 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃𝑗 𝑗 ∈ 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1503 ∃!weu 2042 ∈ wcel 2164 class class class wbr 4029 ℩cio 5213 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-sn 3624 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 |
This theorem is referenced by: basm 12679 |
Copyright terms: Public domain | W3C validator |