ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfvm GIF version

Theorem elfvm 5619
Description: If a function value has a member, the function is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
Assertion
Ref Expression
elfvm (𝐴 ∈ (𝐹𝐵) → ∃𝑗 𝑗𝐹)
Distinct variable group:   𝑗,𝐹
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑗)

Proof of Theorem elfvm
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliotaeu 5266 . . . 4 (𝐴 ∈ (℩𝑥𝐵𝐹𝑥) → ∃!𝑥 𝐵𝐹𝑥)
2 df-fv 5285 . . . 4 (𝐹𝐵) = (℩𝑥𝐵𝐹𝑥)
31, 2eleq2s 2301 . . 3 (𝐴 ∈ (𝐹𝐵) → ∃!𝑥 𝐵𝐹𝑥)
4 euex 2085 . . 3 (∃!𝑥 𝐵𝐹𝑥 → ∃𝑥 𝐵𝐹𝑥)
5 brm 4099 . . . 4 (𝐵𝐹𝑥 → ∃𝑘 𝑘𝐹)
65exlimiv 1622 . . 3 (∃𝑥 𝐵𝐹𝑥 → ∃𝑘 𝑘𝐹)
73, 4, 63syl 17 . 2 (𝐴 ∈ (𝐹𝐵) → ∃𝑘 𝑘𝐹)
8 eleq1w 2267 . . 3 (𝑘 = 𝑗 → (𝑘𝐹𝑗𝐹))
98cbvexv 1943 . 2 (∃𝑘 𝑘𝐹 ↔ ∃𝑗 𝑗𝐹)
107, 9sylib 122 1 (𝐴 ∈ (𝐹𝐵) → ∃𝑗 𝑗𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1516  ∃!weu 2055  wcel 2177   class class class wbr 4048  cio 5236  cfv 5277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-sn 3641  df-uni 3854  df-br 4049  df-iota 5238  df-fv 5285
This theorem is referenced by:  basm  12943
  Copyright terms: Public domain W3C validator