| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfvm | GIF version | ||
| Description: If a function value has a member, the function is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.) |
| Ref | Expression |
|---|---|
| elfvm | ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃𝑗 𝑗 ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliotaeu 5247 | . . . 4 ⊢ (𝐴 ∈ (℩𝑥𝐵𝐹𝑥) → ∃!𝑥 𝐵𝐹𝑥) | |
| 2 | df-fv 5266 | . . . 4 ⊢ (𝐹‘𝐵) = (℩𝑥𝐵𝐹𝑥) | |
| 3 | 1, 2 | eleq2s 2291 | . . 3 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃!𝑥 𝐵𝐹𝑥) |
| 4 | euex 2075 | . . 3 ⊢ (∃!𝑥 𝐵𝐹𝑥 → ∃𝑥 𝐵𝐹𝑥) | |
| 5 | brm 4083 | . . . 4 ⊢ (𝐵𝐹𝑥 → ∃𝑘 𝑘 ∈ 𝐹) | |
| 6 | 5 | exlimiv 1612 | . . 3 ⊢ (∃𝑥 𝐵𝐹𝑥 → ∃𝑘 𝑘 ∈ 𝐹) |
| 7 | 3, 4, 6 | 3syl 17 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃𝑘 𝑘 ∈ 𝐹) |
| 8 | eleq1w 2257 | . . 3 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐹 ↔ 𝑗 ∈ 𝐹)) | |
| 9 | 8 | cbvexv 1933 | . 2 ⊢ (∃𝑘 𝑘 ∈ 𝐹 ↔ ∃𝑗 𝑗 ∈ 𝐹) |
| 10 | 7, 9 | sylib 122 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃𝑗 𝑗 ∈ 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1506 ∃!weu 2045 ∈ wcel 2167 class class class wbr 4033 ℩cio 5217 ‘cfv 5258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sn 3628 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 |
| This theorem is referenced by: basm 12739 |
| Copyright terms: Public domain | W3C validator |