| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfvm | GIF version | ||
| Description: If a function value has a member, the function is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.) |
| Ref | Expression |
|---|---|
| elfvm | ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃𝑗 𝑗 ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliotaeu 5266 | . . . 4 ⊢ (𝐴 ∈ (℩𝑥𝐵𝐹𝑥) → ∃!𝑥 𝐵𝐹𝑥) | |
| 2 | df-fv 5285 | . . . 4 ⊢ (𝐹‘𝐵) = (℩𝑥𝐵𝐹𝑥) | |
| 3 | 1, 2 | eleq2s 2301 | . . 3 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃!𝑥 𝐵𝐹𝑥) |
| 4 | euex 2085 | . . 3 ⊢ (∃!𝑥 𝐵𝐹𝑥 → ∃𝑥 𝐵𝐹𝑥) | |
| 5 | brm 4099 | . . . 4 ⊢ (𝐵𝐹𝑥 → ∃𝑘 𝑘 ∈ 𝐹) | |
| 6 | 5 | exlimiv 1622 | . . 3 ⊢ (∃𝑥 𝐵𝐹𝑥 → ∃𝑘 𝑘 ∈ 𝐹) |
| 7 | 3, 4, 6 | 3syl 17 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃𝑘 𝑘 ∈ 𝐹) |
| 8 | eleq1w 2267 | . . 3 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐹 ↔ 𝑗 ∈ 𝐹)) | |
| 9 | 8 | cbvexv 1943 | . 2 ⊢ (∃𝑘 𝑘 ∈ 𝐹 ↔ ∃𝑗 𝑗 ∈ 𝐹) |
| 10 | 7, 9 | sylib 122 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃𝑗 𝑗 ∈ 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1516 ∃!weu 2055 ∈ wcel 2177 class class class wbr 4048 ℩cio 5236 ‘cfv 5277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-sn 3641 df-uni 3854 df-br 4049 df-iota 5238 df-fv 5285 |
| This theorem is referenced by: basm 12943 |
| Copyright terms: Public domain | W3C validator |