ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfvm GIF version

Theorem elfvm 5587
Description: If a function value has a member, the function is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
Assertion
Ref Expression
elfvm (𝐴 ∈ (𝐹𝐵) → ∃𝑗 𝑗𝐹)
Distinct variable group:   𝑗,𝐹
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑗)

Proof of Theorem elfvm
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliotaeu 5243 . . . 4 (𝐴 ∈ (℩𝑥𝐵𝐹𝑥) → ∃!𝑥 𝐵𝐹𝑥)
2 df-fv 5262 . . . 4 (𝐹𝐵) = (℩𝑥𝐵𝐹𝑥)
31, 2eleq2s 2288 . . 3 (𝐴 ∈ (𝐹𝐵) → ∃!𝑥 𝐵𝐹𝑥)
4 euex 2072 . . 3 (∃!𝑥 𝐵𝐹𝑥 → ∃𝑥 𝐵𝐹𝑥)
5 brm 4079 . . . 4 (𝐵𝐹𝑥 → ∃𝑘 𝑘𝐹)
65exlimiv 1609 . . 3 (∃𝑥 𝐵𝐹𝑥 → ∃𝑘 𝑘𝐹)
73, 4, 63syl 17 . 2 (𝐴 ∈ (𝐹𝐵) → ∃𝑘 𝑘𝐹)
8 eleq1w 2254 . . 3 (𝑘 = 𝑗 → (𝑘𝐹𝑗𝐹))
98cbvexv 1930 . 2 (∃𝑘 𝑘𝐹 ↔ ∃𝑗 𝑗𝐹)
107, 9sylib 122 1 (𝐴 ∈ (𝐹𝐵) → ∃𝑗 𝑗𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1503  ∃!weu 2042  wcel 2164   class class class wbr 4029  cio 5213  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-sn 3624  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262
This theorem is referenced by:  basm  12679
  Copyright terms: Public domain W3C validator