ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfvres Unicode version

Theorem nfvres 5663
Description: The value of a non-member of a restriction is the empty set. (Contributed by NM, 13-Nov-1995.)
Assertion
Ref Expression
nfvres  |-  ( -.  A  e.  B  -> 
( ( F  |`  B ) `  A
)  =  (/) )

Proof of Theorem nfvres
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fv 5326 . . . . . . . . . 10  |-  ( ( F  |`  B ) `  A )  =  ( iota x A ( F  |`  B )
x )
2 df-iota 5278 . . . . . . . . . 10  |-  ( iota
x A ( F  |`  B ) x )  =  U. { y  |  { x  |  A ( F  |`  B ) x }  =  { y } }
31, 2eqtri 2250 . . . . . . . . 9  |-  ( ( F  |`  B ) `  A )  =  U. { y  |  {
x  |  A ( F  |`  B )
x }  =  {
y } }
43eleq2i 2296 . . . . . . . 8  |-  ( z  e.  ( ( F  |`  B ) `  A
)  <->  z  e.  U. { y  |  {
x  |  A ( F  |`  B )
x }  =  {
y } } )
5 eluni 3891 . . . . . . . 8  |-  ( z  e.  U. { y  |  { x  |  A ( F  |`  B ) x }  =  { y } }  <->  E. w ( z  e.  w  /\  w  e. 
{ y  |  {
x  |  A ( F  |`  B )
x }  =  {
y } } ) )
64, 5bitri 184 . . . . . . 7  |-  ( z  e.  ( ( F  |`  B ) `  A
)  <->  E. w ( z  e.  w  /\  w  e.  { y  |  {
x  |  A ( F  |`  B )
x }  =  {
y } } ) )
7 exsimpr 1664 . . . . . . 7  |-  ( E. w ( z  e.  w  /\  w  e. 
{ y  |  {
x  |  A ( F  |`  B )
x }  =  {
y } } )  ->  E. w  w  e. 
{ y  |  {
x  |  A ( F  |`  B )
x }  =  {
y } } )
86, 7sylbi 121 . . . . . 6  |-  ( z  e.  ( ( F  |`  B ) `  A
)  ->  E. w  w  e.  { y  |  { x  |  A
( F  |`  B ) x }  =  {
y } } )
9 df-clab 2216 . . . . . . . 8  |-  ( w  e.  { y  |  { x  |  A
( F  |`  B ) x }  =  {
y } }  <->  [ w  /  y ] {
x  |  A ( F  |`  B )
x }  =  {
y } )
10 nfv 1574 . . . . . . . . 9  |-  F/ y { x  |  A
( F  |`  B ) x }  =  {
w }
11 sneq 3677 . . . . . . . . . 10  |-  ( y  =  w  ->  { y }  =  { w } )
1211eqeq2d 2241 . . . . . . . . 9  |-  ( y  =  w  ->  ( { x  |  A
( F  |`  B ) x }  =  {
y }  <->  { x  |  A ( F  |`  B ) x }  =  { w } ) )
1310, 12sbie 1837 . . . . . . . 8  |-  ( [ w  /  y ] { x  |  A
( F  |`  B ) x }  =  {
y }  <->  { x  |  A ( F  |`  B ) x }  =  { w } )
149, 13bitri 184 . . . . . . 7  |-  ( w  e.  { y  |  { x  |  A
( F  |`  B ) x }  =  {
y } }  <->  { x  |  A ( F  |`  B ) x }  =  { w } )
1514exbii 1651 . . . . . 6  |-  ( E. w  w  e.  {
y  |  { x  |  A ( F  |`  B ) x }  =  { y } }  <->  E. w { x  |  A ( F  |`  B ) x }  =  { w } )
168, 15sylib 122 . . . . 5  |-  ( z  e.  ( ( F  |`  B ) `  A
)  ->  E. w { x  |  A
( F  |`  B ) x }  =  {
w } )
17 euabsn2 3735 . . . . 5  |-  ( E! x  A ( F  |`  B ) x  <->  E. w { x  |  A
( F  |`  B ) x }  =  {
w } )
1816, 17sylibr 134 . . . 4  |-  ( z  e.  ( ( F  |`  B ) `  A
)  ->  E! x  A ( F  |`  B ) x )
19 euex 2107 . . . 4  |-  ( E! x  A ( F  |`  B ) x  ->  E. x  A ( F  |`  B ) x )
20 df-br 4084 . . . . . . . 8  |-  ( A ( F  |`  B ) x  <->  <. A ,  x >.  e.  ( F  |`  B ) )
21 df-res 4731 . . . . . . . . 9  |-  ( F  |`  B )  =  ( F  i^i  ( B  X.  _V ) )
2221eleq2i 2296 . . . . . . . 8  |-  ( <. A ,  x >.  e.  ( F  |`  B )  <->  <. A ,  x >.  e.  ( F  i^i  ( B  X.  _V ) ) )
2320, 22bitri 184 . . . . . . 7  |-  ( A ( F  |`  B ) x  <->  <. A ,  x >.  e.  ( F  i^i  ( B  X.  _V )
) )
24 elin 3387 . . . . . . . 8  |-  ( <. A ,  x >.  e.  ( F  i^i  ( B  X.  _V ) )  <-> 
( <. A ,  x >.  e.  F  /\  <. A ,  x >.  e.  ( B  X.  _V )
) )
2524simprbi 275 . . . . . . 7  |-  ( <. A ,  x >.  e.  ( F  i^i  ( B  X.  _V ) )  ->  <. A ,  x >.  e.  ( B  X.  _V ) )
2623, 25sylbi 121 . . . . . 6  |-  ( A ( F  |`  B ) x  ->  <. A ,  x >.  e.  ( B  X.  _V ) )
27 opelxp1 4753 . . . . . 6  |-  ( <. A ,  x >.  e.  ( B  X.  _V )  ->  A  e.  B
)
2826, 27syl 14 . . . . 5  |-  ( A ( F  |`  B ) x  ->  A  e.  B )
2928exlimiv 1644 . . . 4  |-  ( E. x  A ( F  |`  B ) x  ->  A  e.  B )
3018, 19, 293syl 17 . . 3  |-  ( z  e.  ( ( F  |`  B ) `  A
)  ->  A  e.  B )
3130con3i 635 . 2  |-  ( -.  A  e.  B  ->  -.  z  e.  (
( F  |`  B ) `
 A ) )
3231eq0rdv 3536 1  |-  ( -.  A  e.  B  -> 
( ( F  |`  B ) `  A
)  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538   [wsb 1808   E!weu 2077    e. wcel 2200   {cab 2215   _Vcvv 2799    i^i cin 3196   (/)c0 3491   {csn 3666   <.cop 3669   U.cuni 3888   class class class wbr 4083    X. cxp 4717    |` cres 4721   iotacio 5276   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-res 4731  df-iota 5278  df-fv 5326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator