Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfvres | Unicode version |
Description: The value of a non-member of a restriction is the empty set. (Contributed by NM, 13-Nov-1995.) |
Ref | Expression |
---|---|
nfvres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5206 | . . . . . . . . . 10 | |
2 | df-iota 5160 | . . . . . . . . . 10 | |
3 | 1, 2 | eqtri 2191 | . . . . . . . . 9 |
4 | 3 | eleq2i 2237 | . . . . . . . 8 |
5 | eluni 3799 | . . . . . . . 8 | |
6 | 4, 5 | bitri 183 | . . . . . . 7 |
7 | exsimpr 1611 | . . . . . . 7 | |
8 | 6, 7 | sylbi 120 | . . . . . 6 |
9 | df-clab 2157 | . . . . . . . 8 | |
10 | nfv 1521 | . . . . . . . . 9 | |
11 | sneq 3594 | . . . . . . . . . 10 | |
12 | 11 | eqeq2d 2182 | . . . . . . . . 9 |
13 | 10, 12 | sbie 1784 | . . . . . . . 8 |
14 | 9, 13 | bitri 183 | . . . . . . 7 |
15 | 14 | exbii 1598 | . . . . . 6 |
16 | 8, 15 | sylib 121 | . . . . 5 |
17 | euabsn2 3652 | . . . . 5 | |
18 | 16, 17 | sylibr 133 | . . . 4 |
19 | euex 2049 | . . . 4 | |
20 | df-br 3990 | . . . . . . . 8 | |
21 | df-res 4623 | . . . . . . . . 9 | |
22 | 21 | eleq2i 2237 | . . . . . . . 8 |
23 | 20, 22 | bitri 183 | . . . . . . 7 |
24 | elin 3310 | . . . . . . . 8 | |
25 | 24 | simprbi 273 | . . . . . . 7 |
26 | 23, 25 | sylbi 120 | . . . . . 6 |
27 | opelxp1 4645 | . . . . . 6 | |
28 | 26, 27 | syl 14 | . . . . 5 |
29 | 28 | exlimiv 1591 | . . . 4 |
30 | 18, 19, 29 | 3syl 17 | . . 3 |
31 | 30 | con3i 627 | . 2 |
32 | 31 | eq0rdv 3459 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1348 wex 1485 wsb 1755 weu 2019 wcel 2141 cab 2156 cvv 2730 cin 3120 c0 3414 csn 3583 cop 3586 cuni 3796 class class class wbr 3989 cxp 4609 cres 4613 cio 5158 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-res 4623 df-iota 5160 df-fv 5206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |