| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfvres | Unicode version | ||
| Description: The value of a non-member of a restriction is the empty set. (Contributed by NM, 13-Nov-1995.) |
| Ref | Expression |
|---|---|
| nfvres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 5298 |
. . . . . . . . . 10
| |
| 2 | df-iota 5251 |
. . . . . . . . . 10
| |
| 3 | 1, 2 | eqtri 2228 |
. . . . . . . . 9
|
| 4 | 3 | eleq2i 2274 |
. . . . . . . 8
|
| 5 | eluni 3867 |
. . . . . . . 8
| |
| 6 | 4, 5 | bitri 184 |
. . . . . . 7
|
| 7 | exsimpr 1642 |
. . . . . . 7
| |
| 8 | 6, 7 | sylbi 121 |
. . . . . 6
|
| 9 | df-clab 2194 |
. . . . . . . 8
| |
| 10 | nfv 1552 |
. . . . . . . . 9
| |
| 11 | sneq 3654 |
. . . . . . . . . 10
| |
| 12 | 11 | eqeq2d 2219 |
. . . . . . . . 9
|
| 13 | 10, 12 | sbie 1815 |
. . . . . . . 8
|
| 14 | 9, 13 | bitri 184 |
. . . . . . 7
|
| 15 | 14 | exbii 1629 |
. . . . . 6
|
| 16 | 8, 15 | sylib 122 |
. . . . 5
|
| 17 | euabsn2 3712 |
. . . . 5
| |
| 18 | 16, 17 | sylibr 134 |
. . . 4
|
| 19 | euex 2085 |
. . . 4
| |
| 20 | df-br 4060 |
. . . . . . . 8
| |
| 21 | df-res 4705 |
. . . . . . . . 9
| |
| 22 | 21 | eleq2i 2274 |
. . . . . . . 8
|
| 23 | 20, 22 | bitri 184 |
. . . . . . 7
|
| 24 | elin 3364 |
. . . . . . . 8
| |
| 25 | 24 | simprbi 275 |
. . . . . . 7
|
| 26 | 23, 25 | sylbi 121 |
. . . . . 6
|
| 27 | opelxp1 4727 |
. . . . . 6
| |
| 28 | 26, 27 | syl 14 |
. . . . 5
|
| 29 | 28 | exlimiv 1622 |
. . . 4
|
| 30 | 18, 19, 29 | 3syl 17 |
. . 3
|
| 31 | 30 | con3i 633 |
. 2
|
| 32 | 31 | eq0rdv 3513 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-res 4705 df-iota 5251 df-fv 5298 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |