Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfvres | Unicode version |
Description: The value of a non-member of a restriction is the empty set. (Contributed by NM, 13-Nov-1995.) |
Ref | Expression |
---|---|
nfvres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5175 | . . . . . . . . . 10 | |
2 | df-iota 5132 | . . . . . . . . . 10 | |
3 | 1, 2 | eqtri 2178 | . . . . . . . . 9 |
4 | 3 | eleq2i 2224 | . . . . . . . 8 |
5 | eluni 3775 | . . . . . . . 8 | |
6 | 4, 5 | bitri 183 | . . . . . . 7 |
7 | exsimpr 1598 | . . . . . . 7 | |
8 | 6, 7 | sylbi 120 | . . . . . 6 |
9 | df-clab 2144 | . . . . . . . 8 | |
10 | nfv 1508 | . . . . . . . . 9 | |
11 | sneq 3571 | . . . . . . . . . 10 | |
12 | 11 | eqeq2d 2169 | . . . . . . . . 9 |
13 | 10, 12 | sbie 1771 | . . . . . . . 8 |
14 | 9, 13 | bitri 183 | . . . . . . 7 |
15 | 14 | exbii 1585 | . . . . . 6 |
16 | 8, 15 | sylib 121 | . . . . 5 |
17 | euabsn2 3628 | . . . . 5 | |
18 | 16, 17 | sylibr 133 | . . . 4 |
19 | euex 2036 | . . . 4 | |
20 | df-br 3966 | . . . . . . . 8 | |
21 | df-res 4595 | . . . . . . . . 9 | |
22 | 21 | eleq2i 2224 | . . . . . . . 8 |
23 | 20, 22 | bitri 183 | . . . . . . 7 |
24 | elin 3290 | . . . . . . . 8 | |
25 | 24 | simprbi 273 | . . . . . . 7 |
26 | 23, 25 | sylbi 120 | . . . . . 6 |
27 | opelxp1 4617 | . . . . . 6 | |
28 | 26, 27 | syl 14 | . . . . 5 |
29 | 28 | exlimiv 1578 | . . . 4 |
30 | 18, 19, 29 | 3syl 17 | . . 3 |
31 | 30 | con3i 622 | . 2 |
32 | 31 | eq0rdv 3438 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1335 wex 1472 wsb 1742 weu 2006 wcel 2128 cab 2143 cvv 2712 cin 3101 c0 3394 csn 3560 cop 3563 cuni 3772 class class class wbr 3965 cxp 4581 cres 4585 cio 5130 cfv 5167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-xp 4589 df-res 4595 df-iota 5132 df-fv 5175 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |