Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfvres | Unicode version |
Description: The value of a non-member of a restriction is the empty set. (Contributed by NM, 13-Nov-1995.) |
Ref | Expression |
---|---|
nfvres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5196 | . . . . . . . . . 10 | |
2 | df-iota 5153 | . . . . . . . . . 10 | |
3 | 1, 2 | eqtri 2186 | . . . . . . . . 9 |
4 | 3 | eleq2i 2233 | . . . . . . . 8 |
5 | eluni 3792 | . . . . . . . 8 | |
6 | 4, 5 | bitri 183 | . . . . . . 7 |
7 | exsimpr 1606 | . . . . . . 7 | |
8 | 6, 7 | sylbi 120 | . . . . . 6 |
9 | df-clab 2152 | . . . . . . . 8 | |
10 | nfv 1516 | . . . . . . . . 9 | |
11 | sneq 3587 | . . . . . . . . . 10 | |
12 | 11 | eqeq2d 2177 | . . . . . . . . 9 |
13 | 10, 12 | sbie 1779 | . . . . . . . 8 |
14 | 9, 13 | bitri 183 | . . . . . . 7 |
15 | 14 | exbii 1593 | . . . . . 6 |
16 | 8, 15 | sylib 121 | . . . . 5 |
17 | euabsn2 3645 | . . . . 5 | |
18 | 16, 17 | sylibr 133 | . . . 4 |
19 | euex 2044 | . . . 4 | |
20 | df-br 3983 | . . . . . . . 8 | |
21 | df-res 4616 | . . . . . . . . 9 | |
22 | 21 | eleq2i 2233 | . . . . . . . 8 |
23 | 20, 22 | bitri 183 | . . . . . . 7 |
24 | elin 3305 | . . . . . . . 8 | |
25 | 24 | simprbi 273 | . . . . . . 7 |
26 | 23, 25 | sylbi 120 | . . . . . 6 |
27 | opelxp1 4638 | . . . . . 6 | |
28 | 26, 27 | syl 14 | . . . . 5 |
29 | 28 | exlimiv 1586 | . . . 4 |
30 | 18, 19, 29 | 3syl 17 | . . 3 |
31 | 30 | con3i 622 | . 2 |
32 | 31 | eq0rdv 3453 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1343 wex 1480 wsb 1750 weu 2014 wcel 2136 cab 2151 cvv 2726 cin 3115 c0 3409 csn 3576 cop 3579 cuni 3789 class class class wbr 3982 cxp 4602 cres 4606 cio 5151 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-res 4616 df-iota 5153 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |