ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfvres Unicode version

Theorem nfvres 5612
Description: The value of a non-member of a restriction is the empty set. (Contributed by NM, 13-Nov-1995.)
Assertion
Ref Expression
nfvres  |-  ( -.  A  e.  B  -> 
( ( F  |`  B ) `  A
)  =  (/) )

Proof of Theorem nfvres
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fv 5280 . . . . . . . . . 10  |-  ( ( F  |`  B ) `  A )  =  ( iota x A ( F  |`  B )
x )
2 df-iota 5233 . . . . . . . . . 10  |-  ( iota
x A ( F  |`  B ) x )  =  U. { y  |  { x  |  A ( F  |`  B ) x }  =  { y } }
31, 2eqtri 2226 . . . . . . . . 9  |-  ( ( F  |`  B ) `  A )  =  U. { y  |  {
x  |  A ( F  |`  B )
x }  =  {
y } }
43eleq2i 2272 . . . . . . . 8  |-  ( z  e.  ( ( F  |`  B ) `  A
)  <->  z  e.  U. { y  |  {
x  |  A ( F  |`  B )
x }  =  {
y } } )
5 eluni 3853 . . . . . . . 8  |-  ( z  e.  U. { y  |  { x  |  A ( F  |`  B ) x }  =  { y } }  <->  E. w ( z  e.  w  /\  w  e. 
{ y  |  {
x  |  A ( F  |`  B )
x }  =  {
y } } ) )
64, 5bitri 184 . . . . . . 7  |-  ( z  e.  ( ( F  |`  B ) `  A
)  <->  E. w ( z  e.  w  /\  w  e.  { y  |  {
x  |  A ( F  |`  B )
x }  =  {
y } } ) )
7 exsimpr 1641 . . . . . . 7  |-  ( E. w ( z  e.  w  /\  w  e. 
{ y  |  {
x  |  A ( F  |`  B )
x }  =  {
y } } )  ->  E. w  w  e. 
{ y  |  {
x  |  A ( F  |`  B )
x }  =  {
y } } )
86, 7sylbi 121 . . . . . 6  |-  ( z  e.  ( ( F  |`  B ) `  A
)  ->  E. w  w  e.  { y  |  { x  |  A
( F  |`  B ) x }  =  {
y } } )
9 df-clab 2192 . . . . . . . 8  |-  ( w  e.  { y  |  { x  |  A
( F  |`  B ) x }  =  {
y } }  <->  [ w  /  y ] {
x  |  A ( F  |`  B )
x }  =  {
y } )
10 nfv 1551 . . . . . . . . 9  |-  F/ y { x  |  A
( F  |`  B ) x }  =  {
w }
11 sneq 3644 . . . . . . . . . 10  |-  ( y  =  w  ->  { y }  =  { w } )
1211eqeq2d 2217 . . . . . . . . 9  |-  ( y  =  w  ->  ( { x  |  A
( F  |`  B ) x }  =  {
y }  <->  { x  |  A ( F  |`  B ) x }  =  { w } ) )
1310, 12sbie 1814 . . . . . . . 8  |-  ( [ w  /  y ] { x  |  A
( F  |`  B ) x }  =  {
y }  <->  { x  |  A ( F  |`  B ) x }  =  { w } )
149, 13bitri 184 . . . . . . 7  |-  ( w  e.  { y  |  { x  |  A
( F  |`  B ) x }  =  {
y } }  <->  { x  |  A ( F  |`  B ) x }  =  { w } )
1514exbii 1628 . . . . . 6  |-  ( E. w  w  e.  {
y  |  { x  |  A ( F  |`  B ) x }  =  { y } }  <->  E. w { x  |  A ( F  |`  B ) x }  =  { w } )
168, 15sylib 122 . . . . 5  |-  ( z  e.  ( ( F  |`  B ) `  A
)  ->  E. w { x  |  A
( F  |`  B ) x }  =  {
w } )
17 euabsn2 3702 . . . . 5  |-  ( E! x  A ( F  |`  B ) x  <->  E. w { x  |  A
( F  |`  B ) x }  =  {
w } )
1816, 17sylibr 134 . . . 4  |-  ( z  e.  ( ( F  |`  B ) `  A
)  ->  E! x  A ( F  |`  B ) x )
19 euex 2084 . . . 4  |-  ( E! x  A ( F  |`  B ) x  ->  E. x  A ( F  |`  B ) x )
20 df-br 4046 . . . . . . . 8  |-  ( A ( F  |`  B ) x  <->  <. A ,  x >.  e.  ( F  |`  B ) )
21 df-res 4688 . . . . . . . . 9  |-  ( F  |`  B )  =  ( F  i^i  ( B  X.  _V ) )
2221eleq2i 2272 . . . . . . . 8  |-  ( <. A ,  x >.  e.  ( F  |`  B )  <->  <. A ,  x >.  e.  ( F  i^i  ( B  X.  _V ) ) )
2320, 22bitri 184 . . . . . . 7  |-  ( A ( F  |`  B ) x  <->  <. A ,  x >.  e.  ( F  i^i  ( B  X.  _V )
) )
24 elin 3356 . . . . . . . 8  |-  ( <. A ,  x >.  e.  ( F  i^i  ( B  X.  _V ) )  <-> 
( <. A ,  x >.  e.  F  /\  <. A ,  x >.  e.  ( B  X.  _V )
) )
2524simprbi 275 . . . . . . 7  |-  ( <. A ,  x >.  e.  ( F  i^i  ( B  X.  _V ) )  ->  <. A ,  x >.  e.  ( B  X.  _V ) )
2623, 25sylbi 121 . . . . . 6  |-  ( A ( F  |`  B ) x  ->  <. A ,  x >.  e.  ( B  X.  _V ) )
27 opelxp1 4710 . . . . . 6  |-  ( <. A ,  x >.  e.  ( B  X.  _V )  ->  A  e.  B
)
2826, 27syl 14 . . . . 5  |-  ( A ( F  |`  B ) x  ->  A  e.  B )
2928exlimiv 1621 . . . 4  |-  ( E. x  A ( F  |`  B ) x  ->  A  e.  B )
3018, 19, 293syl 17 . . 3  |-  ( z  e.  ( ( F  |`  B ) `  A
)  ->  A  e.  B )
3130con3i 633 . 2  |-  ( -.  A  e.  B  ->  -.  z  e.  (
( F  |`  B ) `
 A ) )
3231eq0rdv 3505 1  |-  ( -.  A  e.  B  -> 
( ( F  |`  B ) `  A
)  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1515   [wsb 1785   E!weu 2054    e. wcel 2176   {cab 2191   _Vcvv 2772    i^i cin 3165   (/)c0 3460   {csn 3633   <.cop 3636   U.cuni 3850   class class class wbr 4045    X. cxp 4674    |` cres 4678   iotacio 5231   ` cfv 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-xp 4682  df-res 4688  df-iota 5233  df-fv 5280
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator