ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfvres Unicode version

Theorem nfvres 5589
Description: The value of a non-member of a restriction is the empty set. (Contributed by NM, 13-Nov-1995.)
Assertion
Ref Expression
nfvres  |-  ( -.  A  e.  B  -> 
( ( F  |`  B ) `  A
)  =  (/) )

Proof of Theorem nfvres
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fv 5263 . . . . . . . . . 10  |-  ( ( F  |`  B ) `  A )  =  ( iota x A ( F  |`  B )
x )
2 df-iota 5216 . . . . . . . . . 10  |-  ( iota
x A ( F  |`  B ) x )  =  U. { y  |  { x  |  A ( F  |`  B ) x }  =  { y } }
31, 2eqtri 2214 . . . . . . . . 9  |-  ( ( F  |`  B ) `  A )  =  U. { y  |  {
x  |  A ( F  |`  B )
x }  =  {
y } }
43eleq2i 2260 . . . . . . . 8  |-  ( z  e.  ( ( F  |`  B ) `  A
)  <->  z  e.  U. { y  |  {
x  |  A ( F  |`  B )
x }  =  {
y } } )
5 eluni 3839 . . . . . . . 8  |-  ( z  e.  U. { y  |  { x  |  A ( F  |`  B ) x }  =  { y } }  <->  E. w ( z  e.  w  /\  w  e. 
{ y  |  {
x  |  A ( F  |`  B )
x }  =  {
y } } ) )
64, 5bitri 184 . . . . . . 7  |-  ( z  e.  ( ( F  |`  B ) `  A
)  <->  E. w ( z  e.  w  /\  w  e.  { y  |  {
x  |  A ( F  |`  B )
x }  =  {
y } } ) )
7 exsimpr 1629 . . . . . . 7  |-  ( E. w ( z  e.  w  /\  w  e. 
{ y  |  {
x  |  A ( F  |`  B )
x }  =  {
y } } )  ->  E. w  w  e. 
{ y  |  {
x  |  A ( F  |`  B )
x }  =  {
y } } )
86, 7sylbi 121 . . . . . 6  |-  ( z  e.  ( ( F  |`  B ) `  A
)  ->  E. w  w  e.  { y  |  { x  |  A
( F  |`  B ) x }  =  {
y } } )
9 df-clab 2180 . . . . . . . 8  |-  ( w  e.  { y  |  { x  |  A
( F  |`  B ) x }  =  {
y } }  <->  [ w  /  y ] {
x  |  A ( F  |`  B )
x }  =  {
y } )
10 nfv 1539 . . . . . . . . 9  |-  F/ y { x  |  A
( F  |`  B ) x }  =  {
w }
11 sneq 3630 . . . . . . . . . 10  |-  ( y  =  w  ->  { y }  =  { w } )
1211eqeq2d 2205 . . . . . . . . 9  |-  ( y  =  w  ->  ( { x  |  A
( F  |`  B ) x }  =  {
y }  <->  { x  |  A ( F  |`  B ) x }  =  { w } ) )
1310, 12sbie 1802 . . . . . . . 8  |-  ( [ w  /  y ] { x  |  A
( F  |`  B ) x }  =  {
y }  <->  { x  |  A ( F  |`  B ) x }  =  { w } )
149, 13bitri 184 . . . . . . 7  |-  ( w  e.  { y  |  { x  |  A
( F  |`  B ) x }  =  {
y } }  <->  { x  |  A ( F  |`  B ) x }  =  { w } )
1514exbii 1616 . . . . . 6  |-  ( E. w  w  e.  {
y  |  { x  |  A ( F  |`  B ) x }  =  { y } }  <->  E. w { x  |  A ( F  |`  B ) x }  =  { w } )
168, 15sylib 122 . . . . 5  |-  ( z  e.  ( ( F  |`  B ) `  A
)  ->  E. w { x  |  A
( F  |`  B ) x }  =  {
w } )
17 euabsn2 3688 . . . . 5  |-  ( E! x  A ( F  |`  B ) x  <->  E. w { x  |  A
( F  |`  B ) x }  =  {
w } )
1816, 17sylibr 134 . . . 4  |-  ( z  e.  ( ( F  |`  B ) `  A
)  ->  E! x  A ( F  |`  B ) x )
19 euex 2072 . . . 4  |-  ( E! x  A ( F  |`  B ) x  ->  E. x  A ( F  |`  B ) x )
20 df-br 4031 . . . . . . . 8  |-  ( A ( F  |`  B ) x  <->  <. A ,  x >.  e.  ( F  |`  B ) )
21 df-res 4672 . . . . . . . . 9  |-  ( F  |`  B )  =  ( F  i^i  ( B  X.  _V ) )
2221eleq2i 2260 . . . . . . . 8  |-  ( <. A ,  x >.  e.  ( F  |`  B )  <->  <. A ,  x >.  e.  ( F  i^i  ( B  X.  _V ) ) )
2320, 22bitri 184 . . . . . . 7  |-  ( A ( F  |`  B ) x  <->  <. A ,  x >.  e.  ( F  i^i  ( B  X.  _V )
) )
24 elin 3343 . . . . . . . 8  |-  ( <. A ,  x >.  e.  ( F  i^i  ( B  X.  _V ) )  <-> 
( <. A ,  x >.  e.  F  /\  <. A ,  x >.  e.  ( B  X.  _V )
) )
2524simprbi 275 . . . . . . 7  |-  ( <. A ,  x >.  e.  ( F  i^i  ( B  X.  _V ) )  ->  <. A ,  x >.  e.  ( B  X.  _V ) )
2623, 25sylbi 121 . . . . . 6  |-  ( A ( F  |`  B ) x  ->  <. A ,  x >.  e.  ( B  X.  _V ) )
27 opelxp1 4694 . . . . . 6  |-  ( <. A ,  x >.  e.  ( B  X.  _V )  ->  A  e.  B
)
2826, 27syl 14 . . . . 5  |-  ( A ( F  |`  B ) x  ->  A  e.  B )
2928exlimiv 1609 . . . 4  |-  ( E. x  A ( F  |`  B ) x  ->  A  e.  B )
3018, 19, 293syl 17 . . 3  |-  ( z  e.  ( ( F  |`  B ) `  A
)  ->  A  e.  B )
3130con3i 633 . 2  |-  ( -.  A  e.  B  ->  -.  z  e.  (
( F  |`  B ) `
 A ) )
3231eq0rdv 3492 1  |-  ( -.  A  e.  B  -> 
( ( F  |`  B ) `  A
)  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503   [wsb 1773   E!weu 2042    e. wcel 2164   {cab 2179   _Vcvv 2760    i^i cin 3153   (/)c0 3447   {csn 3619   <.cop 3622   U.cuni 3836   class class class wbr 4030    X. cxp 4658    |` cres 4662   iotacio 5214   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-res 4672  df-iota 5216  df-fv 5263
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator