ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliniseg2 Unicode version

Theorem eliniseg2 5108
Description: Eliminate the class existence constraint in eliniseg 5098. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 17-Nov-2015.)
Assertion
Ref Expression
eliniseg2  |-  ( Rel 
A  ->  ( C  e.  ( `' A " { B } )  <->  C A B ) )

Proof of Theorem eliniseg2
StepHypRef Expression
1 relcnv 5106 . . 3  |-  Rel  `' A
2 elrelimasn 5094 . . 3  |-  ( Rel  `' A  ->  ( C  e.  ( `' A " { B } )  <-> 
B `' A C ) )
31, 2ax-mp 5 . 2  |-  ( C  e.  ( `' A " { B } )  <-> 
B `' A C )
4 relbrcnvg 5107 . 2  |-  ( Rel 
A  ->  ( B `' A C  <->  C A B ) )
53, 4bitrid 192 1  |-  ( Rel 
A  ->  ( C  e.  ( `' A " { B } )  <->  C A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2200   {csn 3666   class class class wbr 4083   `'ccnv 4718   "cima 4722   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732
This theorem is referenced by:  isunitd  14070
  Copyright terms: Public domain W3C validator