ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliniseg2 Unicode version

Theorem eliniseg2 5045
Description: Eliminate the class existence constraint in eliniseg 5035. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 17-Nov-2015.)
Assertion
Ref Expression
eliniseg2  |-  ( Rel 
A  ->  ( C  e.  ( `' A " { B } )  <->  C A B ) )

Proof of Theorem eliniseg2
StepHypRef Expression
1 relcnv 5043 . . 3  |-  Rel  `' A
2 elrelimasn 5031 . . 3  |-  ( Rel  `' A  ->  ( C  e.  ( `' A " { B } )  <-> 
B `' A C ) )
31, 2ax-mp 5 . 2  |-  ( C  e.  ( `' A " { B } )  <-> 
B `' A C )
4 relbrcnvg 5044 . 2  |-  ( Rel 
A  ->  ( B `' A C  <->  C A B ) )
53, 4bitrid 192 1  |-  ( Rel 
A  ->  ( C  e.  ( `' A " { B } )  <->  C A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2164   {csn 3618   class class class wbr 4029   `'ccnv 4658   "cima 4662   Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672
This theorem is referenced by:  isunitd  13602
  Copyright terms: Public domain W3C validator