![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relcnv | Unicode version |
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
relcnv |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 4667 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | relopabi 4787 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: class class
class wbr 4029 ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-opab 4091 df-xp 4665 df-rel 4666 df-cnv 4667 |
This theorem is referenced by: relbrcnvg 5044 eliniseg2 5045 cnvsym 5049 intasym 5050 asymref 5051 cnvopab 5067 cnv0 5069 cnvdif 5072 dfrel2 5116 cnvcnv 5118 cnvsn0 5134 cnvcnvsn 5142 resdm2 5156 coi2 5182 coires1 5183 cnvssrndm 5187 unidmrn 5198 cnvexg 5203 cnviinm 5207 funi 5286 funcnvsn 5299 funcnv2 5314 funcnveq 5317 fcnvres 5437 f1cnvcnv 5470 f1ompt 5709 fliftcnv 5838 cnvf1o 6278 reldmtpos 6306 dmtpos 6309 rntpos 6310 dftpos3 6315 dftpos4 6316 tpostpos 6317 tposf12 6322 ercnv 6608 cnvct 6863 relcnvfi 7000 fsumcnv 11580 fisumcom2 11581 fprodcnv 11768 fprodcom2fi 11769 |
Copyright terms: Public domain | W3C validator |