![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relcnv | Unicode version |
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
relcnv |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 4668 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | relopabi 4788 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: class class
class wbr 4030 ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-opab 4092 df-xp 4666 df-rel 4667 df-cnv 4668 |
This theorem is referenced by: relbrcnvg 5045 eliniseg2 5046 cnvsym 5050 intasym 5051 asymref 5052 cnvopab 5068 cnv0 5070 cnvdif 5073 dfrel2 5117 cnvcnv 5119 cnvsn0 5135 cnvcnvsn 5143 resdm2 5157 coi2 5183 coires1 5184 cnvssrndm 5188 unidmrn 5199 cnvexg 5204 cnviinm 5208 funi 5287 funcnvsn 5300 funcnv2 5315 funcnveq 5318 fcnvres 5438 f1cnvcnv 5471 f1ompt 5710 fliftcnv 5839 cnvf1o 6280 reldmtpos 6308 dmtpos 6311 rntpos 6312 dftpos3 6317 dftpos4 6318 tpostpos 6319 tposf12 6324 ercnv 6610 cnvct 6865 relcnvfi 7002 fsumcnv 11583 fisumcom2 11584 fprodcnv 11771 fprodcom2fi 11772 |
Copyright terms: Public domain | W3C validator |