![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relcnv | Unicode version |
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
relcnv |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 4636 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | relopabi 4754 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: class class
class wbr 4005 ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-opab 4067 df-xp 4634 df-rel 4635 df-cnv 4636 |
This theorem is referenced by: relbrcnvg 5009 eliniseg2 5010 cnvsym 5014 intasym 5015 asymref 5016 cnvopab 5032 cnv0 5034 cnvdif 5037 dfrel2 5081 cnvcnv 5083 cnvsn0 5099 cnvcnvsn 5107 resdm2 5121 coi2 5147 coires1 5148 cnvssrndm 5152 unidmrn 5163 cnvexg 5168 cnviinm 5172 funi 5250 funcnvsn 5263 funcnv2 5278 funcnveq 5281 fcnvres 5401 f1cnvcnv 5434 f1ompt 5670 fliftcnv 5799 cnvf1o 6229 reldmtpos 6257 dmtpos 6260 rntpos 6261 dftpos3 6266 dftpos4 6267 tpostpos 6268 tposf12 6273 ercnv 6559 cnvct 6812 relcnvfi 6943 fsumcnv 11448 fisumcom2 11449 fprodcnv 11636 fprodcom2fi 11637 |
Copyright terms: Public domain | W3C validator |