Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relcnv | Unicode version |
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
relcnv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 4612 | . 2 | |
2 | 1 | relopabi 4730 | 1 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3982 ccnv 4603 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 |
This theorem is referenced by: relbrcnvg 4983 cnvsym 4987 intasym 4988 asymref 4989 cnvopab 5005 cnv0 5007 cnvdif 5010 dfrel2 5054 cnvcnv 5056 cnvsn0 5072 cnvcnvsn 5080 resdm2 5094 coi2 5120 coires1 5121 cnvssrndm 5125 unidmrn 5136 cnvexg 5141 cnviinm 5145 funi 5220 funcnvsn 5233 funcnv2 5248 funcnveq 5251 fcnvres 5371 f1cnvcnv 5404 f1ompt 5636 fliftcnv 5763 cnvf1o 6193 reldmtpos 6221 dmtpos 6224 rntpos 6225 dftpos3 6230 dftpos4 6231 tpostpos 6232 tposf12 6237 ercnv 6522 cnvct 6775 relcnvfi 6906 fsumcnv 11378 fisumcom2 11379 fprodcnv 11566 fprodcom2fi 11567 |
Copyright terms: Public domain | W3C validator |