ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relbrcnvg Unicode version

Theorem relbrcnvg 4983
Description: When  R is a relation, the sethood assumptions on brcnv 4787 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
relbrcnvg  |-  ( Rel 
R  ->  ( A `' R B  <->  B R A ) )

Proof of Theorem relbrcnvg
StepHypRef Expression
1 relcnv 4982 . . . 4  |-  Rel  `' R
2 brrelex12 4642 . . . 4  |-  ( ( Rel  `' R  /\  A `' R B )  -> 
( A  e.  _V  /\  B  e.  _V )
)
31, 2mpan 421 . . 3  |-  ( A `' R B  ->  ( A  e.  _V  /\  B  e.  _V ) )
43a1i 9 . 2  |-  ( Rel 
R  ->  ( A `' R B  ->  ( A  e.  _V  /\  B  e.  _V ) ) )
5 brrelex12 4642 . . . 4  |-  ( ( Rel  R  /\  B R A )  ->  ( B  e.  _V  /\  A  e.  _V ) )
65ancomd 265 . . 3  |-  ( ( Rel  R  /\  B R A )  ->  ( A  e.  _V  /\  B  e.  _V ) )
76ex 114 . 2  |-  ( Rel 
R  ->  ( B R A  ->  ( A  e.  _V  /\  B  e.  _V ) ) )
8 brcnvg 4785 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A `' R B 
<->  B R A ) )
98a1i 9 . 2  |-  ( Rel 
R  ->  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A `' R B  <->  B R A ) ) )
104, 7, 9pm5.21ndd 695 1  |-  ( Rel 
R  ->  ( A `' R B  <->  B R A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   _Vcvv 2726   class class class wbr 3982   `'ccnv 4603   Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612
This theorem is referenced by:  relbrcnv  4984
  Copyright terms: Public domain W3C validator