ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relbrcnvg Unicode version

Theorem relbrcnvg 5000
Description: When  R is a relation, the sethood assumptions on brcnv 4803 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
relbrcnvg  |-  ( Rel 
R  ->  ( A `' R B  <->  B R A ) )

Proof of Theorem relbrcnvg
StepHypRef Expression
1 relcnv 4999 . . . 4  |-  Rel  `' R
2 brrelex12 4658 . . . 4  |-  ( ( Rel  `' R  /\  A `' R B )  -> 
( A  e.  _V  /\  B  e.  _V )
)
31, 2mpan 424 . . 3  |-  ( A `' R B  ->  ( A  e.  _V  /\  B  e.  _V ) )
43a1i 9 . 2  |-  ( Rel 
R  ->  ( A `' R B  ->  ( A  e.  _V  /\  B  e.  _V ) ) )
5 brrelex12 4658 . . . 4  |-  ( ( Rel  R  /\  B R A )  ->  ( B  e.  _V  /\  A  e.  _V ) )
65ancomd 267 . . 3  |-  ( ( Rel  R  /\  B R A )  ->  ( A  e.  _V  /\  B  e.  _V ) )
76ex 115 . 2  |-  ( Rel 
R  ->  ( B R A  ->  ( A  e.  _V  /\  B  e.  _V ) ) )
8 brcnvg 4801 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A `' R B 
<->  B R A ) )
98a1i 9 . 2  |-  ( Rel 
R  ->  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A `' R B  <->  B R A ) ) )
104, 7, 9pm5.21ndd 705 1  |-  ( Rel 
R  ->  ( A `' R B  <->  B R A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2146   _Vcvv 2735   class class class wbr 3998   `'ccnv 4619   Rel wrel 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-xp 4626  df-rel 4627  df-cnv 4628
This theorem is referenced by:  relbrcnv  5001
  Copyright terms: Public domain W3C validator