ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eloprabg Unicode version

Theorem eloprabg 5976
Description: The law of concretion for operation class abstraction. Compare elopab 4270. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
eloprabg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
eloprabg.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
eloprabg.3  |-  ( z  =  C  ->  ( ch 
<->  th ) )
Assertion
Ref Expression
eloprabg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  th )
)
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    th, x, y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)    ch( x, y, z)    V( x, y, z)    W( x, y, z)    X( x, y, z)

Proof of Theorem eloprabg
StepHypRef Expression
1 eloprabg.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
2 eloprabg.2 . . 3  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
3 eloprabg.3 . . 3  |-  ( z  =  C  ->  ( ch 
<->  th ) )
41, 2, 3syl3an9b 1320 . 2  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  th )
)
54eloprabga 5975 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 979    = wceq 1363    e. wcel 2158   <.cop 3607   {coprab 5889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-oprab 5892
This theorem is referenced by:  ov  6007  ovg  6026
  Copyright terms: Public domain W3C validator