ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eloprabg Unicode version

Theorem eloprabg 5930
Description: The law of concretion for operation class abstraction. Compare elopab 4236. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
eloprabg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
eloprabg.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
eloprabg.3  |-  ( z  =  C  ->  ( ch 
<->  th ) )
Assertion
Ref Expression
eloprabg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  th )
)
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    th, x, y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)    ch( x, y, z)    V( x, y, z)    W( x, y, z)    X( x, y, z)

Proof of Theorem eloprabg
StepHypRef Expression
1 eloprabg.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
2 eloprabg.2 . . 3  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
3 eloprabg.3 . . 3  |-  ( z  =  C  ->  ( ch 
<->  th ) )
41, 2, 3syl3an9b 1300 . 2  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  th )
)
54eloprabga 5929 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   <.cop 3579   {coprab 5843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-oprab 5846
This theorem is referenced by:  ov  5961  ovg  5980
  Copyright terms: Public domain W3C validator