Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eloprabg Unicode version

Theorem eloprabg 5899
 Description: The law of concretion for operation class abstraction. Compare elopab 4213. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
eloprabg.1
eloprabg.2
eloprabg.3
Assertion
Ref Expression
eloprabg
Distinct variable groups:   ,,,   ,,,   ,,,   ,,,
Allowed substitution hints:   (,,)   (,,)   (,,)   (,,)   (,,)   (,,)

Proof of Theorem eloprabg
StepHypRef Expression
1 eloprabg.1 . . 3
2 eloprabg.2 . . 3
3 eloprabg.3 . . 3
41, 2, 3syl3an9b 1289 . 2
54eloprabga 5898 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104   w3a 963   wceq 1332   wcel 2125  cop 3559  coprab 5815 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-oprab 5818 This theorem is referenced by:  ov  5930  ovg  5949
 Copyright terms: Public domain W3C validator