ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eloprabg Unicode version

Theorem eloprabg 6035
Description: The law of concretion for operation class abstraction. Compare elopab 4305. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
eloprabg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
eloprabg.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
eloprabg.3  |-  ( z  =  C  ->  ( ch 
<->  th ) )
Assertion
Ref Expression
eloprabg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  th )
)
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    th, x, y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)    ch( x, y, z)    V( x, y, z)    W( x, y, z)    X( x, y, z)

Proof of Theorem eloprabg
StepHypRef Expression
1 eloprabg.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
2 eloprabg.2 . . 3  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
3 eloprabg.3 . . 3  |-  ( z  =  C  ->  ( ch 
<->  th ) )
41, 2, 3syl3an9b 1323 . 2  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  th )
)
54eloprabga 6034 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   <.cop 3636   {coprab 5947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-oprab 5950
This theorem is referenced by:  ov  6067  ovg  6087
  Copyright terms: Public domain W3C validator