ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpr2elpr Unicode version

Theorem elpr2elpr 3825
Description: For an element  A of an unordered pair which is a subset of a given set  V, there is another (maybe the same) element  b of the given set  V being an element of the unordered pair. (Contributed by AV, 5-Dec-2020.)
Assertion
Ref Expression
elpr2elpr  |-  ( ( X  e.  V  /\  Y  e.  V  /\  A  e.  { X ,  Y } )  ->  E. b  e.  V  { X ,  Y }  =  { A ,  b } )
Distinct variable groups:    A, b    V, b    X, b    Y, b

Proof of Theorem elpr2elpr
StepHypRef Expression
1 simprr 531 . . . . . 6  |-  ( ( A  =  X  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  Y  e.  V )
2 preq12 3717 . . . . . . . 8  |-  ( ( A  =  X  /\  b  =  Y )  ->  { A ,  b }  =  { X ,  Y } )
32eqcomd 2212 . . . . . . 7  |-  ( ( A  =  X  /\  b  =  Y )  ->  { X ,  Y }  =  { A ,  b } )
43adantlr 477 . . . . . 6  |-  ( ( ( A  =  X  /\  ( X  e.  V  /\  Y  e.  V ) )  /\  b  =  Y )  ->  { X ,  Y }  =  { A ,  b } )
51, 4rspcedeq2vd 2891 . . . . 5  |-  ( ( A  =  X  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  E. b  e.  V  { X ,  Y }  =  { A ,  b }
)
65ex 115 . . . 4  |-  ( A  =  X  ->  (
( X  e.  V  /\  Y  e.  V
)  ->  E. b  e.  V  { X ,  Y }  =  { A ,  b }
) )
7 simprl 529 . . . . . 6  |-  ( ( A  =  Y  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  X  e.  V )
8 preq12 3717 . . . . . . . 8  |-  ( ( A  =  Y  /\  b  =  X )  ->  { A ,  b }  =  { Y ,  X } )
9 prcom 3714 . . . . . . . 8  |-  { Y ,  X }  =  { X ,  Y }
108, 9eqtr2di 2256 . . . . . . 7  |-  ( ( A  =  Y  /\  b  =  X )  ->  { X ,  Y }  =  { A ,  b } )
1110adantlr 477 . . . . . 6  |-  ( ( ( A  =  Y  /\  ( X  e.  V  /\  Y  e.  V ) )  /\  b  =  X )  ->  { X ,  Y }  =  { A ,  b } )
127, 11rspcedeq2vd 2891 . . . . 5  |-  ( ( A  =  Y  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  E. b  e.  V  { X ,  Y }  =  { A ,  b }
)
1312ex 115 . . . 4  |-  ( A  =  Y  ->  (
( X  e.  V  /\  Y  e.  V
)  ->  E. b  e.  V  { X ,  Y }  =  { A ,  b }
) )
146, 13jaoi 718 . . 3  |-  ( ( A  =  X  \/  A  =  Y )  ->  ( ( X  e.  V  /\  Y  e.  V )  ->  E. b  e.  V  { X ,  Y }  =  { A ,  b }
) )
15 elpri 3661 . . 3  |-  ( A  e.  { X ,  Y }  ->  ( A  =  X  \/  A  =  Y ) )
1614, 15syl11 31 . 2  |-  ( ( X  e.  V  /\  Y  e.  V )  ->  ( A  e.  { X ,  Y }  ->  E. b  e.  V  { X ,  Y }  =  { A ,  b } ) )
17163impia 1203 1  |-  ( ( X  e.  V  /\  Y  e.  V  /\  A  e.  { X ,  Y } )  ->  E. b  e.  V  { X ,  Y }  =  { A ,  b } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2177   E.wrex 2486   {cpr 3639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-un 3174  df-sn 3644  df-pr 3645
This theorem is referenced by:  upgredg2vtx  15822
  Copyright terms: Public domain W3C validator