| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpr2elpr | Unicode version | ||
| Description: For an element |
| Ref | Expression |
|---|---|
| elpr2elpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 531 |
. . . . . 6
| |
| 2 | preq12 3745 |
. . . . . . . 8
| |
| 3 | 2 | eqcomd 2235 |
. . . . . . 7
|
| 4 | 3 | adantlr 477 |
. . . . . 6
|
| 5 | 1, 4 | rspcedeq2vd 2917 |
. . . . 5
|
| 6 | 5 | ex 115 |
. . . 4
|
| 7 | simprl 529 |
. . . . . 6
| |
| 8 | preq12 3745 |
. . . . . . . 8
| |
| 9 | prcom 3742 |
. . . . . . . 8
| |
| 10 | 8, 9 | eqtr2di 2279 |
. . . . . . 7
|
| 11 | 10 | adantlr 477 |
. . . . . 6
|
| 12 | 7, 11 | rspcedeq2vd 2917 |
. . . . 5
|
| 13 | 12 | ex 115 |
. . . 4
|
| 14 | 6, 13 | jaoi 721 |
. . 3
|
| 15 | elpri 3689 |
. . 3
| |
| 16 | 14, 15 | syl11 31 |
. 2
|
| 17 | 16 | 3impia 1224 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: upgredg2vtx 15940 |
| Copyright terms: Public domain | W3C validator |