| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2di | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr2di.1 |
|
| eqtr2di.2 |
|
| Ref | Expression |
|---|---|
| eqtr2di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2di.1 |
. . 3
| |
| 2 | eqtr2di.2 |
. . 3
| |
| 3 | 1, 2 | eqtrdi 2256 |
. 2
|
| 4 | 3 | eqcomd 2213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: eqtr4id 2259 elpr2elpr 3830 elxp4 5189 elxp5 5190 fo1stresm 6270 fo2ndresm 6271 eloprabi 6305 fo2ndf 6336 xpsnen 6941 xpassen 6950 ac6sfi 7021 undifdc 7047 ine0 8501 nn0n0n1ge2 9478 fzval2 10168 fseq1p1m1 10251 fsum2dlemstep 11860 modfsummodlemstep 11883 fprod2dlemstep 12048 ef4p 12120 sin01bnd 12183 odd2np1 12299 sqpweven 12612 2sqpwodd 12613 psmetdmdm 14911 xmetdmdm 14943 dveflem 15313 reeff1oleme 15359 abssinper 15433 lgseisenlem1 15662 |
| Copyright terms: Public domain | W3C validator |