| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2di | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr2di.1 |
|
| eqtr2di.2 |
|
| Ref | Expression |
|---|---|
| eqtr2di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2di.1 |
. . 3
| |
| 2 | eqtr2di.2 |
. . 3
| |
| 3 | 1, 2 | eqtrdi 2254 |
. 2
|
| 4 | 3 | eqcomd 2211 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: eqtr4id 2257 elxp4 5171 elxp5 5172 fo1stresm 6249 fo2ndresm 6250 eloprabi 6284 fo2ndf 6315 xpsnen 6918 xpassen 6927 ac6sfi 6997 undifdc 7023 ine0 8468 nn0n0n1ge2 9445 fzval2 10135 fseq1p1m1 10218 fsum2dlemstep 11778 modfsummodlemstep 11801 fprod2dlemstep 11966 ef4p 12038 sin01bnd 12101 odd2np1 12217 sqpweven 12530 2sqpwodd 12531 psmetdmdm 14829 xmetdmdm 14861 dveflem 15231 reeff1oleme 15277 abssinper 15351 lgseisenlem1 15580 |
| Copyright terms: Public domain | W3C validator |