| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2di | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr2di.1 |
|
| eqtr2di.2 |
|
| Ref | Expression |
|---|---|
| eqtr2di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2di.1 |
. . 3
| |
| 2 | eqtr2di.2 |
. . 3
| |
| 3 | 1, 2 | eqtrdi 2245 |
. 2
|
| 4 | 3 | eqcomd 2202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eqtr4id 2248 elxp4 5158 elxp5 5159 fo1stresm 6228 fo2ndresm 6229 eloprabi 6263 fo2ndf 6294 xpsnen 6889 xpassen 6898 ac6sfi 6968 undifdc 6994 ine0 8437 nn0n0n1ge2 9413 fzval2 10103 fseq1p1m1 10186 fsum2dlemstep 11616 modfsummodlemstep 11639 fprod2dlemstep 11804 ef4p 11876 sin01bnd 11939 odd2np1 12055 sqpweven 12368 2sqpwodd 12369 psmetdmdm 14644 xmetdmdm 14676 dveflem 15046 reeff1oleme 15092 abssinper 15166 lgseisenlem1 15395 |
| Copyright terms: Public domain | W3C validator |