![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr2di | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr2di.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eqtr2di.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqtr2di |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2di.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqtr2di.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtrdi 2242 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | eqcomd 2199 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: eqtr4id 2245 elxp4 5154 elxp5 5155 fo1stresm 6216 fo2ndresm 6217 eloprabi 6251 fo2ndf 6282 xpsnen 6877 xpassen 6886 ac6sfi 6956 undifdc 6982 ine0 8415 nn0n0n1ge2 9390 fzval2 10080 fseq1p1m1 10163 fsum2dlemstep 11580 modfsummodlemstep 11603 fprod2dlemstep 11768 ef4p 11840 sin01bnd 11903 odd2np1 12017 sqpweven 12316 2sqpwodd 12317 psmetdmdm 14503 xmetdmdm 14535 dveflem 14905 reeff1oleme 14948 abssinper 15022 lgseisenlem1 15227 |
Copyright terms: Public domain | W3C validator |