| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2di | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr2di.1 |
|
| eqtr2di.2 |
|
| Ref | Expression |
|---|---|
| eqtr2di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2di.1 |
. . 3
| |
| 2 | eqtr2di.2 |
. . 3
| |
| 3 | 1, 2 | eqtrdi 2245 |
. 2
|
| 4 | 3 | eqcomd 2202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eqtr4id 2248 elxp4 5157 elxp5 5158 fo1stresm 6219 fo2ndresm 6220 eloprabi 6254 fo2ndf 6285 xpsnen 6880 xpassen 6889 ac6sfi 6959 undifdc 6985 ine0 8420 nn0n0n1ge2 9396 fzval2 10086 fseq1p1m1 10169 fsum2dlemstep 11599 modfsummodlemstep 11622 fprod2dlemstep 11787 ef4p 11859 sin01bnd 11922 odd2np1 12038 sqpweven 12343 2sqpwodd 12344 psmetdmdm 14560 xmetdmdm 14592 dveflem 14962 reeff1oleme 15008 abssinper 15082 lgseisenlem1 15311 |
| Copyright terms: Public domain | W3C validator |