| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2di | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr2di.1 |
|
| eqtr2di.2 |
|
| Ref | Expression |
|---|---|
| eqtr2di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2di.1 |
. . 3
| |
| 2 | eqtr2di.2 |
. . 3
| |
| 3 | 1, 2 | eqtrdi 2278 |
. 2
|
| 4 | 3 | eqcomd 2235 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: eqtr4id 2281 elpr2elpr 3854 elxp4 5216 elxp5 5217 fo1stresm 6307 fo2ndresm 6308 eloprabi 6342 fo2ndf 6373 xpsnen 6980 xpassen 6989 ac6sfi 7060 undifdc 7086 ine0 8540 nn0n0n1ge2 9517 fzval2 10207 fseq1p1m1 10290 fsum2dlemstep 11945 modfsummodlemstep 11968 fprod2dlemstep 12133 ef4p 12205 sin01bnd 12268 odd2np1 12384 sqpweven 12697 2sqpwodd 12698 psmetdmdm 14998 xmetdmdm 15030 dveflem 15400 reeff1oleme 15446 abssinper 15520 lgseisenlem1 15749 |
| Copyright terms: Public domain | W3C validator |