ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpr2elpr GIF version

Theorem elpr2elpr 3853
Description: For an element 𝐴 of an unordered pair which is a subset of a given set 𝑉, there is another (maybe the same) element 𝑏 of the given set 𝑉 being an element of the unordered pair. (Contributed by AV, 5-Dec-2020.)
Assertion
Ref Expression
elpr2elpr ((𝑋𝑉𝑌𝑉𝐴 ∈ {𝑋, 𝑌}) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})
Distinct variable groups:   𝐴,𝑏   𝑉,𝑏   𝑋,𝑏   𝑌,𝑏

Proof of Theorem elpr2elpr
StepHypRef Expression
1 simprr 531 . . . . . 6 ((𝐴 = 𝑋 ∧ (𝑋𝑉𝑌𝑉)) → 𝑌𝑉)
2 preq12 3745 . . . . . . . 8 ((𝐴 = 𝑋𝑏 = 𝑌) → {𝐴, 𝑏} = {𝑋, 𝑌})
32eqcomd 2235 . . . . . . 7 ((𝐴 = 𝑋𝑏 = 𝑌) → {𝑋, 𝑌} = {𝐴, 𝑏})
43adantlr 477 . . . . . 6 (((𝐴 = 𝑋 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑏 = 𝑌) → {𝑋, 𝑌} = {𝐴, 𝑏})
51, 4rspcedeq2vd 2917 . . . . 5 ((𝐴 = 𝑋 ∧ (𝑋𝑉𝑌𝑉)) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})
65ex 115 . . . 4 (𝐴 = 𝑋 → ((𝑋𝑉𝑌𝑉) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}))
7 simprl 529 . . . . . 6 ((𝐴 = 𝑌 ∧ (𝑋𝑉𝑌𝑉)) → 𝑋𝑉)
8 preq12 3745 . . . . . . . 8 ((𝐴 = 𝑌𝑏 = 𝑋) → {𝐴, 𝑏} = {𝑌, 𝑋})
9 prcom 3742 . . . . . . . 8 {𝑌, 𝑋} = {𝑋, 𝑌}
108, 9eqtr2di 2279 . . . . . . 7 ((𝐴 = 𝑌𝑏 = 𝑋) → {𝑋, 𝑌} = {𝐴, 𝑏})
1110adantlr 477 . . . . . 6 (((𝐴 = 𝑌 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑏 = 𝑋) → {𝑋, 𝑌} = {𝐴, 𝑏})
127, 11rspcedeq2vd 2917 . . . . 5 ((𝐴 = 𝑌 ∧ (𝑋𝑉𝑌𝑉)) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})
1312ex 115 . . . 4 (𝐴 = 𝑌 → ((𝑋𝑉𝑌𝑉) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}))
146, 13jaoi 721 . . 3 ((𝐴 = 𝑋𝐴 = 𝑌) → ((𝑋𝑉𝑌𝑉) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}))
15 elpri 3689 . . 3 (𝐴 ∈ {𝑋, 𝑌} → (𝐴 = 𝑋𝐴 = 𝑌))
1614, 15syl11 31 . 2 ((𝑋𝑉𝑌𝑉) → (𝐴 ∈ {𝑋, 𝑌} → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}))
17163impia 1224 1 ((𝑋𝑉𝑌𝑉𝐴 ∈ {𝑋, 𝑌}) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713  w3a 1002   = wceq 1395  wcel 2200  wrex 2509  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by:  upgredg2vtx  15940
  Copyright terms: Public domain W3C validator