ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmpt2d GIF version

Theorem elrnmpt2d 4859
Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
elrnmpt2d.1 𝐹 = (𝑥𝐴𝐵)
elrnmpt2d.2 (𝜑𝐶 ∈ ran 𝐹)
Assertion
Ref Expression
elrnmpt2d (𝜑 → ∃𝑥𝐴 𝐶 = 𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem elrnmpt2d
StepHypRef Expression
1 elrnmpt2d.2 . 2 (𝜑𝐶 ∈ ran 𝐹)
2 elrnmpt2d.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
32elrnmpt 4853 . . 3 (𝐶 ∈ ran 𝐹 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
43ibi 175 . 2 (𝐶 ∈ ran 𝐹 → ∃𝑥𝐴 𝐶 = 𝐵)
51, 4syl 14 1 (𝜑 → ∃𝑥𝐴 𝐶 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  wrex 2445  cmpt 4043  ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-mpt 4045  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator