ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rn0 Unicode version

Theorem rn0 4923
Description: The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
rn0  |-  ran  (/)  =  (/)

Proof of Theorem rn0
StepHypRef Expression
1 dm0 4881 . 2  |-  dom  (/)  =  (/)
2 dm0rn0 4884 . 2  |-  ( dom  (/)  =  (/)  <->  ran  (/)  =  (/) )
31, 2mpbi 145 1  |-  ran  (/)  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1364   (/)c0 3451   dom cdm 4664   ran crn 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-cnv 4672  df-dm 4674  df-rn 4675
This theorem is referenced by:  ima0  5029  0ima  5030  xpima1  5117  f0  5451  exmidfodomrlemim  7280
  Copyright terms: Public domain W3C validator